Integrate LAMMPS CUDA versions into master branch

Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
Rafael Ravedutti 2022-08-09 18:53:53 +02:00
parent eb77e1a3bd
commit c18124b066
19 changed files with 1004 additions and 92 deletions

View File

@ -3,6 +3,7 @@ TARGET = MDBench-$(TAG)-$(OPT_SCHEME)
BUILD_DIR = ./$(TAG)-$(OPT_SCHEME) BUILD_DIR = ./$(TAG)-$(OPT_SCHEME)
SRC_DIR = ./$(OPT_SCHEME) SRC_DIR = ./$(OPT_SCHEME)
ASM_DIR = ./asm ASM_DIR = ./asm
CUDA_DIR = ./$(SRC_DIR)/cuda
MAKE_DIR = ./ MAKE_DIR = ./
Q ?= @ Q ?= @
@ -15,12 +16,12 @@ include $(MAKE_DIR)/include_GROMACS.mk
INCLUDES += -I./$(SRC_DIR)/includes INCLUDES += -I./$(SRC_DIR)/includes
ifeq ($(strip $(DATA_LAYOUT)),AOS) ifeq ($(strip $(DATA_LAYOUT)),AOS)
DEFINES += -DAOS DEFINES += -DAOS
endif endif
ifeq ($(strip $(DATA_TYPE)),SP) ifeq ($(strip $(DATA_TYPE)),SP)
DEFINES += -DPRECISION=1 DEFINES += -DPRECISION=1
else else
DEFINES += -DPRECISION=2 DEFINES += -DPRECISION=2
endif endif
ifneq ($(ASM_SYNTAX), ATT) ifneq ($(ASM_SYNTAX), ATT)
@ -79,11 +80,14 @@ ifeq ($(strip $(USE_SIMD_KERNEL)),true)
DEFINES += -DUSE_SIMD_KERNEL DEFINES += -DUSE_SIMD_KERNEL
endif endif
VPATH = $(SRC_DIR) $(ASM_DIR) VPATH = $(SRC_DIR) $(ASM_DIR) $(CUDA_DIR)
ASM = $(patsubst $(SRC_DIR)/%.c, $(BUILD_DIR)/%.s,$(wildcard $(SRC_DIR)/*.c)) ASM = $(patsubst $(SRC_DIR)/%.c, $(BUILD_DIR)/%.s,$(wildcard $(SRC_DIR)/*.c))
OVERWRITE:= $(patsubst $(ASM_DIR)/%-new.s, $(BUILD_DIR)/%.o,$(wildcard $(ASM_DIR)/*-new.s)) OVERWRITE:= $(patsubst $(ASM_DIR)/%-new.s, $(BUILD_DIR)/%.o,$(wildcard $(ASM_DIR)/*-new.s))
OBJ = $(filter-out $(BUILD_DIR)/main% $(OVERWRITE),$(patsubst $(SRC_DIR)/%.c, $(BUILD_DIR)/%.o,$(wildcard $(SRC_DIR)/*.c))) OBJ = $(filter-out $(BUILD_DIR)/main% $(OVERWRITE),$(patsubst $(SRC_DIR)/%.c, $(BUILD_DIR)/%.o,$(wildcard $(SRC_DIR)/*.c)))
OBJ += $(patsubst $(ASM_DIR)/%.s, $(BUILD_DIR)/%.o,$(wildcard $(ASM_DIR)/*.s)) OBJ += $(patsubst $(ASM_DIR)/%.s, $(BUILD_DIR)/%.o,$(wildcard $(ASM_DIR)/*.s))
ifeq ($(strip $(TAG)),NVCC)
OBJ += $(patsubst $(CUDA_DIR)/%.cu, $(BUILD_DIR)/%-cuda.o,$(wildcard $(CUDA_DIR)/*.cu))
endif
CPPFLAGS := $(CPPFLAGS) $(DEFINES) $(OPTIONS) $(INCLUDES) CPPFLAGS := $(CPPFLAGS) $(DEFINES) $(OPTIONS) $(INCLUDES)
# $(warning $(OBJ)) # $(warning $(OBJ))
@ -106,6 +110,11 @@ $(BUILD_DIR)/%.o: %.c
$(Q)$(CC) -c $(CPPFLAGS) $(CFLAGS) $< -o $@ $(Q)$(CC) -c $(CPPFLAGS) $(CFLAGS) $< -o $@
$(Q)$(CC) $(CPPFLAGS) -MT $@ -MM $< > $(BUILD_DIR)/$*.d $(Q)$(CC) $(CPPFLAGS) -MT $@ -MM $< > $(BUILD_DIR)/$*.d
$(BUILD_DIR)/%-cuda.o: %.cu
$(info ===> COMPILE $@)
$(Q)$(CC) -c $(CPPFLAGS) $(CFLAGS) $< -o $@
$(Q)$(CC) $(CPPFLAGS) -MT $@ -MM $< > $(BUILD_DIR)/$*.d
$(BUILD_DIR)/%.s: %.c $(BUILD_DIR)/%.s: %.c
$(info ===> GENERATE ASM $@) $(info ===> GENERATE ASM $@)
$(Q)$(CC) -S $(ASFLAGS) $(CPPFLAGS) $(CFLAGS) $< -o $@ $(Q)$(CC) -S $(ASFLAGS) $(CPPFLAGS) $(CFLAGS) $< -o $@

View File

@ -1,4 +1,4 @@
# Compiler tag (GCC/CLANG/ICC/ONEAPI) # Compiler tag (GCC/CLANG/ICC/ONEAPI/NVCC)
TAG ?= ICC TAG ?= ICC
# Instruction set (SSE/AVX/AVX2/AVX512) # Instruction set (SSE/AVX/AVX2/AVX512)
ISA ?= AVX512 ISA ?= AVX512

16
include_NVCC.mk Normal file
View File

@ -0,0 +1,16 @@
CC = nvcc
LINKER = $(CC)
ANSI_CFLAGS = -ansi
ANSI_CFLAGS += -std=c99
ANSI_CFLAGS += -pedantic
ANSI_CFLAGS += -Wextra
# CFLAGS = -O0 -g -std=c99 -fargument-noalias
#CFLAGS = -O3 -g -arch=sm_61 # -fopenmp
CFLAGS = -O3 -g # -fopenmp
ASFLAGS = -masm=intel
LFLAGS =
DEFINES = -D_GNU_SOURCE -DCUDA_TARGET -DNO_ZMM_INTRIN #-DLIKWID_PERFMON
INCLUDES = $(LIKWID_INC)
LIBS = -lm $(LIKWID_LIB) -lcuda -lcudart #-llikwid

View File

@ -24,28 +24,24 @@
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <errno.h> #include <errno.h>
#include <util.h>
void* allocate (int alignment, size_t bytesize) void *allocate(int alignment, size_t bytesize) {
{
int errorCode; int errorCode;
void* ptr; void* ptr;
errorCode = posix_memalign(&ptr, alignment, bytesize); errorCode = posix_memalign(&ptr, alignment, bytesize);
if(errorCode == EINVAL) {
if (errorCode) { fprintf(stderr, "Error: Alignment parameter is not a power of two\n");
if (errorCode == EINVAL) { exit(EXIT_FAILURE);
fprintf(stderr,
"Error: Alignment parameter is not a power of two\n");
exit(EXIT_FAILURE);
}
if (errorCode == ENOMEM) {
fprintf(stderr,
"Error: Insufficient memory to fulfill the request\n");
exit(EXIT_FAILURE);
}
} }
if (ptr == NULL) { if(errorCode == ENOMEM) {
fprintf(stderr, "Error: Insufficient memory to fulfill the request\n");
exit(EXIT_FAILURE);
}
if(ptr == NULL) {
fprintf(stderr, "Error: posix_memalign failed!\n"); fprintf(stderr, "Error: posix_memalign failed!\n");
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
@ -53,13 +49,8 @@ void* allocate (int alignment, size_t bytesize)
return ptr; return ptr;
} }
void* reallocate ( void *reallocate(void* ptr, int alignment, size_t newBytesize, size_t oldBytesize) {
void* ptr, void *newarray = allocate(alignment, newBytesize);
int alignment,
size_t newBytesize,
size_t oldBytesize)
{
void* newarray = allocate(alignment, newBytesize);
if(ptr != NULL) { if(ptr != NULL) {
memcpy(newarray, ptr, oldBytesize); memcpy(newarray, ptr, oldBytesize);
@ -68,3 +59,25 @@ void* reallocate (
return newarray; return newarray;
} }
#ifndef CUDA_TARGET
void *allocate_gpu(int alignment, size_t bytesize) { return NULL; }
void *reallocate_gpu(void *ptr, int alignment, size_t newBytesize, size_t oldBytesize) { return NULL; }
#else
void *allocate_gpu(int alignment, size_t bytesize) {
void *ptr;
checkCUDAError("allocate_gpu", cudaMallocHost((void **) &ptr, bytesize));
return ptr;
}
// Data is not preserved
void *reallocate_gpu(void *ptr, int alignment, size_t newBytesize, size_t oldBytesize) {
void *newarray = allocate_gpu(alignment, newBytesize);
if(ptr != NULL) {
cudaFreeHost(ptr);
}
return newarray;
}
#endif

View File

@ -31,6 +31,10 @@
#include <allocate.h> #include <allocate.h>
#include <util.h> #include <util.h>
#ifdef CUDA_TARGET
#include <cuda_atom.h>
#endif
#define DELTA 20000 #define DELTA 20000
#ifndef MAXLINE #ifndef MAXLINE
@ -67,6 +71,14 @@ void createAtom(Atom *atom, Parameter *param) {
atom->Natoms = 4 * param->nx * param->ny * param->nz; atom->Natoms = 4 * param->nx * param->ny * param->nz;
atom->Nlocal = 0; atom->Nlocal = 0;
atom->ntypes = param->ntypes; atom->ntypes = param->ntypes;
#ifdef CUDA_TARGET
checkCUDAError( "atom->epsilon cudaMallocHost", cudaMallocHost((void**)&(atom->epsilon), atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)) ); // atom->epsilon = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT));
checkCUDAError( "atom->sigma6 cudaMallocHost", cudaMallocHost((void**)&(atom->sigma6), atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)) ); // atom->sigma6 = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT));
checkCUDAError( "atom->cutforcesq cudaMallocHost", cudaMallocHost((void**)&(atom->cutforcesq), atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)) ); // atom->cutforcesq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT));
checkCUDAError( "atom->cutneighsq cudaMallocHost", cudaMallocHost((void**)&(atom->cutneighsq), atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)) ); // atom->cutneighsq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT));
#endif
atom->epsilon = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->epsilon = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT));
atom->sigma6 = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->sigma6 = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT));
atom->cutforcesq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT)); atom->cutforcesq = allocate(ALIGNMENT, atom->ntypes * atom->ntypes * sizeof(MD_FLOAT));

76
lammps/cuda/atom.cu Normal file
View File

@ -0,0 +1,76 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
extern "C" {
#include <stdio.h>
#include <cuda_runtime.h>
//---
#include <allocate.h>
#include <atom.h>
#include <cuda_atom.h>
#include <neighbor.h>
void initCuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) {
c_atom->Natoms = atom->Natoms;
c_atom->Nlocal = atom->Nlocal;
c_atom->Nghost = atom->Nghost;
c_atom->Nmax = atom->Nmax;
c_atom->ntypes = atom->ntypes;
c_atom->border_map = NULL;
const int Nlocal = atom->Nlocal;
checkCUDAError( "c_atom->x malloc", cudaMalloc((void**)&(c_atom->x), sizeof(MD_FLOAT) * atom->Nmax * 3) );
checkCUDAError( "c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->fx malloc", cudaMalloc((void**)&(c_atom->fx), sizeof(MD_FLOAT) * Nlocal * 3) );
checkCUDAError( "c_atom->vx malloc", cudaMalloc((void**)&(c_atom->vx), sizeof(MD_FLOAT) * Nlocal * 3) );
checkCUDAError( "c_atom->vx memcpy", cudaMemcpy(c_atom->vx, atom->vx, sizeof(MD_FLOAT) * Nlocal * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->type malloc", cudaMalloc((void**)&(c_atom->type), sizeof(int) * atom->Nmax) );
checkCUDAError( "c_atom->epsilon malloc", cudaMalloc((void**)&(c_atom->epsilon), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom->sigma6 malloc", cudaMalloc((void**)&(c_atom->sigma6), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom->cutforcesq malloc", cudaMalloc((void**)&(c_atom->cutforcesq), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_neighbor->neighbors malloc", cudaMalloc((void**)&c_neighbor->neighbors, sizeof(int) * Nlocal * neighbor->maxneighs) );
checkCUDAError( "c_neighbor->numneigh malloc", cudaMalloc((void**)&c_neighbor->numneigh, sizeof(int) * Nlocal) );
checkCUDAError( "c_atom->type memcpy", cudaMemcpy(c_atom->type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->sigma6 memcpy", cudaMemcpy(c_atom->sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->epsilon memcpy", cudaMemcpy(c_atom->epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->cutforcesq memcpy", cudaMemcpy(c_atom->cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
}
void checkCUDAError(const char *msg, cudaError_t err) {
if (err != cudaSuccess) {
//print a human readable error message
printf("[CUDA ERROR %s]: %s\r\n", msg, cudaGetErrorString(err));
exit(-1);
}
}
}

202
lammps/cuda/force.cu Normal file
View File

@ -0,0 +1,202 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
//---
#include <cuda_profiler_api.h>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
//---
#include <likwid-marker.h>
extern "C" {
#include <atom.h>
#include <cuda_atom.h>
#include <allocate.h>
#include <neighbor.h>
#include <parameter.h>
#include <timing.h>
#include <util.h>
}
// cuda kernel
__global__ void calc_force(Atom a, MD_FLOAT cutforcesq, MD_FLOAT sigma6, MD_FLOAT epsilon, int Nlocal, int neigh_maxneighs, int *neigh_neighbors, int *neigh_numneigh) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= Nlocal) {
return;
}
Atom *atom = &a;
const int numneighs = neigh_numneigh[i];
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
MD_FLOAT fix = 0;
MD_FLOAT fiy = 0;
MD_FLOAT fiz = 0;
for(int k = 0; k < numneighs; k++) {
int j = neigh_neighbors[atom->Nlocal * k + i];
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
const MD_FLOAT sigma6 = atom->sigma6[type_ij];
const MD_FLOAT epsilon = atom->epsilon[type_ij];
#endif
if(rsq < cutforcesq) {
MD_FLOAT sr2 = 1.0 / rsq;
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
fix += delx * force;
fiy += dely * force;
fiz += delz * force;
}
}
atom_fx(i) = fix;
atom_fy(i) = fiy;
atom_fz(i) = fiz;
}
__global__ void kernel_initial_integrate(MD_FLOAT dtforce, MD_FLOAT dt, int Nlocal, Atom a) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if( i >= Nlocal ) {
return;
}
Atom *atom = &a;
atom_vx(i) += dtforce * atom_fx(i);
atom_vy(i) += dtforce * atom_fy(i);
atom_vz(i) += dtforce * atom_fz(i);
atom_x(i) = atom_x(i) + dt * atom_vx(i);
atom_y(i) = atom_y(i) + dt * atom_vy(i);
atom_z(i) = atom_z(i) + dt * atom_vz(i);
}
__global__ void kernel_final_integrate(MD_FLOAT dtforce, int Nlocal, Atom a) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if( i >= Nlocal ) {
return;
}
Atom *atom = &a;
atom_vx(i) += dtforce * atom_fx(i);
atom_vy(i) += dtforce * atom_fy(i);
atom_vz(i) += dtforce * atom_fz(i);
}
extern "C" {
void finalIntegrate_cuda(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom) {
const int Nlocal = atom->Nlocal;
const int num_threads_per_block = get_num_threads();
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_final_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, Nlocal, *c_atom);
checkCUDAError( "PeekAtLastError FinalIntegrate", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync FinalIntegrate", cudaDeviceSynchronize() );
if(doReneighbour) {
checkCUDAError( "FinalIntegrate: velocity memcpy", cudaMemcpy(atom->vx, c_atom->vx, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}
}
void initialIntegrate_cuda(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom) {
const int Nlocal = atom->Nlocal;
const int num_threads_per_block = get_num_threads();
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_initial_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, param->dt, Nlocal, *c_atom);
checkCUDAError( "PeekAtLastError InitialIntegrate", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync InitialIntegrate", cudaDeviceSynchronize() );
if(doReneighbour) {
checkCUDAError( "InitialIntegrate: velocity memcpy", cudaMemcpy(atom->vx, c_atom->vx, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}
}
double computeForceLJFullNeigh_cuda(Parameter *param, Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) {
const int num_threads_per_block = get_num_threads();
int Nlocal = atom->Nlocal;
#ifndef EXPLICIT_TYPES
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
MD_FLOAT sigma6 = param->sigma6;
MD_FLOAT epsilon = param->epsilon;
#endif
/*
int nDevices;
cudaGetDeviceCount(&nDevices);
size_t free, total;
for(int i = 0; i < nDevices; ++i) {
cudaMemGetInfo( &free, &total );
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, i);
printf("DEVICE %d/%d NAME: %s\r\n with %ld MB/%ld MB memory used", i + 1, nDevices, prop.name, free / 1024 / 1024, total / 1024 / 1024);
}
*/
// HINT: Run with cuda-memcheck ./MDBench-NVCC in case of error
// checkCUDAError( "c_atom->fx memset", cudaMemset(c_atom->fx, 0, sizeof(MD_FLOAT) * Nlocal * 3) );
cudaProfilerStart();
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
double S = getTimeStamp();
LIKWID_MARKER_START("force");
calc_force <<< num_blocks, num_threads_per_block >>> (*c_atom, cutforcesq, sigma6, epsilon, Nlocal, neighbor->maxneighs, c_neighbor->neighbors, c_neighbor->numneigh);
checkCUDAError( "PeekAtLastError ComputeForce", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync ComputeForce", cudaDeviceSynchronize() );
cudaProfilerStop();
LIKWID_MARKER_STOP("force");
double E = getTimeStamp();
return E-S;
}
}

329
lammps/cuda/neighbor.cu Normal file
View File

@ -0,0 +1,329 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <cuda_profiler_api.h>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
//---
extern "C" {
#include <atom.h>
#include <cuda_atom.h>
#include <parameter.h>
#include <neighbor.h>
#include <util.h>
}
static MD_FLOAT xprd, yprd, zprd;
static MD_FLOAT bininvx, bininvy, bininvz;
static int mbinxlo, mbinylo, mbinzlo;
static int nbinx, nbiny, nbinz;
static int mbinx, mbiny, mbinz; // n bins in x, y, z
static int mbins; //total number of bins
static int atoms_per_bin; // max atoms per bin
static MD_FLOAT cutneighsq; // neighbor cutoff squared
static int nmax;
static int nstencil; // # of bins in stencil
static int* stencil; // stencil list of bin offsets
static int* c_stencil = NULL;
static int* c_resize_needed = NULL;
static int* c_new_maxneighs = NULL;
static Binning c_binning {
.bincount = NULL,
.bins = NULL,
.mbins = 0,
.atoms_per_bin = 0
};
__device__ int coord2bin_device(MD_FLOAT xin, MD_FLOAT yin, MD_FLOAT zin, Neighbor_params np) {
int ix, iy, iz;
if(xin >= np.xprd) {
ix = (int)((xin - np.xprd) * np.bininvx) + np.nbinx - np.mbinxlo;
} else if(xin >= 0.0) {
ix = (int)(xin * np.bininvx) - np.mbinxlo;
} else {
ix = (int)(xin * np.bininvx) - np.mbinxlo - 1;
}
if(yin >= np.yprd) {
iy = (int)((yin - np.yprd) * np.bininvy) + np.nbiny - np.mbinylo;
} else if(yin >= 0.0) {
iy = (int)(yin * np.bininvy) - np.mbinylo;
} else {
iy = (int)(yin * np.bininvy) - np.mbinylo - 1;
}
if(zin >= np.zprd) {
iz = (int)((zin - np.zprd) * np.bininvz) + np.nbinz - np.mbinzlo;
} else if(zin >= 0.0) {
iz = (int)(zin * np.bininvz) - np.mbinzlo;
} else {
iz = (int)(zin * np.bininvz) - np.mbinzlo - 1;
}
return (iz * np.mbiny * np.mbinx + iy * np.mbinx + ix + 1);
}
/* sorts the contents of a bin to make it comparable to the CPU version */
/* uses bubble sort since atoms per bin should be relatively small and can be done in situ */
__global__ void sort_bin_contents_kernel(int* bincount, int* bins, int mbins, int atoms_per_bin){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= mbins) {
return;
}
int atoms_in_bin = bincount[i];
int *bin_ptr = &bins[i * atoms_per_bin];
int sorted;
do {
sorted = 1;
int tmp;
for(int index = 0; index < atoms_in_bin - 1; index++){
if (bin_ptr[index] > bin_ptr[index + 1]){
tmp = bin_ptr[index];
bin_ptr[index] = bin_ptr[index + 1];
bin_ptr[index + 1] = tmp;
sorted = 0;
}
}
} while (!sorted);
}
__global__ void binatoms_kernel(Atom a, int* bincount, int* bins, int atoms_per_bin, Neighbor_params np, int *resize_needed){
Atom* atom = &a;
const int i = blockIdx.x * blockDim.x + threadIdx.x;
int nall = atom->Nlocal + atom->Nghost;
if(i >= nall){
return;
}
MD_FLOAT x = atom_x(i);
MD_FLOAT y = atom_y(i);
MD_FLOAT z = atom_z(i);
int ibin = coord2bin_device(x, y, z, np);
int ac = atomicAdd(&bincount[ibin], 1);
if(ac < atoms_per_bin){
bins[ibin * atoms_per_bin + ac] = i;
} else {
atomicMax(resize_needed, ac);
}
}
__global__ void compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil,
int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs, MD_FLOAT cutneighsq){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nlocal = a.Nlocal;
if( i >= Nlocal ) {
return;
}
Atom *atom = &a;
Neighbor *neighbor = &neigh;
int* neighptr = &(neighbor->neighbors[i]);
int n = 0;
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
int ibin = coord2bin_device(xtmp, ytmp, ztmp, np);
#ifdef EXPLICIT_TYPES
int type_i = atom->type[i];
#endif
for(int k = 0; k < nstencil; k++) {
int jbin = ibin + stencil[k];
int* loc_bin = &bins[jbin * atoms_per_bin];
for(int m = 0; m < bincount[jbin]; m++) {
int j = loc_bin[m];
if ( j == i ){
continue;
}
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
int type_j = atom->type[j];
const MD_FLOAT cutoff = atom->cutneighsq[type_i * atom->ntypes + type_j];
#else
const MD_FLOAT cutoff = cutneighsq;
#endif
if( rsq <= cutoff ) {
int idx = atom->Nlocal * n;
neighptr[idx] = j;
n += 1;
}
}
}
neighbor->numneigh[i] = n;
if(n > neighbor->maxneighs) {
atomicMax(new_maxneighs, n);
}
}
void binatoms_cuda(Atom *c_atom, Binning *c_binning, int *c_resize_needed, Neighbor_params *np, const int threads_per_block) {
int nall = c_atom->Nlocal + c_atom->Nghost;
int resize = 1;
const int num_blocks = ceil((float) nall / (float) threads_per_block);
while(resize > 0) {
resize = 0;
checkCUDAError("binatoms_cuda c_binning->bincount memset", cudaMemset(c_binning->bincount, 0, c_binning->mbins * sizeof(int)));
checkCUDAError("binatoms_cuda c_resize_needed memset", cudaMemset(c_resize_needed, 0, sizeof(int)) );
/*binatoms_kernel(Atom a, int* bincount, int* bins, int c_binning->atoms_per_bin, Neighbor_params np, int *resize_needed) */
binatoms_kernel<<<num_blocks, threads_per_block>>>(*c_atom, c_binning->bincount, c_binning->bins, c_binning->atoms_per_bin, *np, c_resize_needed);
checkCUDAError( "PeekAtLastError binatoms kernel", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync binatoms kernel", cudaDeviceSynchronize() );
checkCUDAError("binatoms_cuda c_resize_needed memcpy back", cudaMemcpy(&resize, c_resize_needed, sizeof(int), cudaMemcpyDeviceToHost) );
if(resize) {
cudaFree(c_binning->bins);
c_binning->atoms_per_bin *= 2;
checkCUDAError("binatoms_cuda c_binning->bins resize malloc", cudaMalloc(&c_binning->bins, c_binning->mbins * c_binning->atoms_per_bin * sizeof(int)) );
}
}
atoms_per_bin = c_binning->atoms_per_bin;
const int sortBlocks = ceil((float)mbins / (float)threads_per_block);
/*void sort_bin_contents_kernel(int* bincount, int* bins, int mbins, int atoms_per_bin)*/
sort_bin_contents_kernel<<<sortBlocks, threads_per_block>>>(c_binning->bincount, c_binning->bins, c_binning->mbins, c_binning->atoms_per_bin);
checkCUDAError( "PeekAtLastError sort_bin_contents kernel", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync sort_bin_contents kernel", cudaDeviceSynchronize() );
}
void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) {
const int num_threads_per_block = get_num_threads();
int nall = atom->Nlocal + atom->Nghost;
c_neighbor->maxneighs = neighbor->maxneighs;
cudaProfilerStart();
/* upload stencil */
// TODO move all of this initialization into its own method
if(c_stencil == NULL){
checkCUDAError( "buildNeighbor c_n_stencil malloc", cudaMalloc((void**)&c_stencil, nstencil * sizeof(int)) );
checkCUDAError( "buildNeighbor c_n_stencil memcpy", cudaMemcpy(c_stencil, stencil, nstencil * sizeof(int), cudaMemcpyHostToDevice ));
}
if(c_binning.mbins == 0){
c_binning.mbins = mbins;
c_binning.atoms_per_bin = atoms_per_bin;
checkCUDAError( "buildNeighbor c_binning->bincount malloc", cudaMalloc((void**)&(c_binning.bincount), c_binning.mbins * sizeof(int)) );
checkCUDAError( "buidlNeighbor c_binning->bins malloc", cudaMalloc((void**)&(c_binning.bins), c_binning.mbins * c_binning.atoms_per_bin * sizeof(int)) );
}
Neighbor_params np {
.xprd = xprd,
.yprd = yprd,
.zprd = zprd,
.bininvx = bininvx,
.bininvy = bininvy,
.bininvz = bininvz,
.mbinxlo = mbinxlo,
.mbinylo = mbinylo,
.mbinzlo = mbinzlo,
.nbinx = nbinx,
.nbiny = nbiny,
.nbinz = nbinz,
.mbinx = mbinx,
.mbiny = mbiny,
.mbinz = mbinz
};
if(c_resize_needed == NULL){
checkCUDAError("buildNeighbor c_resize_needed malloc", cudaMalloc((void**)&c_resize_needed, sizeof(int)) );
}
/* bin local & ghost atoms */
binatoms_cuda(c_atom, &c_binning, c_resize_needed, &np, num_threads_per_block);
if(c_new_maxneighs == NULL){
checkCUDAError("c_new_maxneighs malloc", cudaMalloc((void**)&c_new_maxneighs, sizeof(int) ));
}
int resize = 1;
/* extend c_neighbor arrays if necessary */
if(nall > nmax) {
nmax = nall;
if(c_neighbor->numneigh) cudaFree(c_neighbor->numneigh);
if(c_neighbor->neighbors) cudaFree(c_neighbor->neighbors);
checkCUDAError( "buildNeighbor c_numneigh malloc", cudaMalloc((void**)&(c_neighbor->numneigh), nmax * sizeof(int)) );
checkCUDAError( "buildNeighbor c_neighbors malloc", cudaMalloc((void**)&(c_neighbor->neighbors), nmax * c_neighbor->maxneighs * sizeof(int)) );
}
/* loop over each atom, storing neighbors */
while(resize) {
resize = 0;
checkCUDAError("c_new_maxneighs memset", cudaMemset(c_new_maxneighs, 0, sizeof(int) ));
// TODO call compute_neigborhood kernel here
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
/*compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil,
int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs)
* */
compute_neighborhood<<<num_blocks, num_threads_per_block>>>(*c_atom, *c_neighbor,
np, nstencil, c_stencil,
c_binning.bins, c_binning.atoms_per_bin, c_binning.bincount,
c_new_maxneighs,
cutneighsq);
checkCUDAError( "PeekAtLastError ComputeNeighbor", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync ComputeNeighbor", cudaDeviceSynchronize() );
// TODO copy the value of c_new_maxneighs back to host and check if it has been modified
int new_maxneighs;
checkCUDAError("c_new_maxneighs memcpy back", cudaMemcpy(&new_maxneighs, c_new_maxneighs, sizeof(int), cudaMemcpyDeviceToHost));
if (new_maxneighs > c_neighbor->maxneighs){
resize = 1;
}
if(resize) {
printf("RESIZE %d\n", c_neighbor->maxneighs);
c_neighbor->maxneighs = new_maxneighs * 1.2;
printf("NEW SIZE %d\n", c_neighbor->maxneighs);
cudaFree(c_neighbor->neighbors);
checkCUDAError("c_neighbor->neighbors resize malloc", cudaMalloc((void**)(&c_neighbor->neighbors), c_atom->Nmax * c_neighbor->maxneighs * sizeof(int)));
}
}
neighbor->maxneighs = c_neighbor->maxneighs;
cudaProfilerStop();
}

151
lammps/cuda/pbc.cu Normal file
View File

@ -0,0 +1,151 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
//---
extern "C" {
#include <allocate.h>
#include <atom.h>
#include <cuda_atom.h>
#include <pbc.h>
#include <util.h>
}
static int NmaxGhost;
static int *PBCx, *PBCy, *PBCz;
static int c_NmaxGhost = 0;
static int *c_PBCx = NULL, *c_PBCy = NULL, *c_PBCz = NULL;
__global__ void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
Atom* atom = &a;
if( i >= atom->Nlocal ){
return;
}
if (atom_x(i) < 0.0) {
atom_x(i) += xprd;
} else if (atom_x(i) >= xprd) {
atom_x(i) -= xprd;
}
if (atom_y(i) < 0.0) {
atom_y(i) += yprd;
} else if (atom_y(i) >= yprd) {
atom_y(i) -= yprd;
}
if (atom_z(i) < 0.0) {
atom_z(i) += zprd;
} else if (atom_z(i) >= zprd) {
atom_z(i) -= zprd;
}
}
__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nghost = a.Nghost;
if( i >= Nghost ) {
return;
}
Atom* atom = &a;
int *border_map = atom->border_map;
int nlocal = atom->Nlocal;
atom_x(nlocal + i) = atom_x(border_map[i]) + PBCx[i] * xprd;
atom_y(nlocal + i) = atom_y(border_map[i]) + PBCy[i] * yprd;
atom_z(nlocal + i) = atom_z(border_map[i]) + PBCz[i] * zprd;
}
/* update coordinates of ghost atoms */
/* uses mapping created in setupPbc */
void updatePbc_cuda(Atom *atom, Atom *c_atom, Parameter *param, bool doReneighbor) {
const int num_threads_per_block = get_num_threads();
if (doReneighbor){
c_atom->Natoms = atom->Natoms;
c_atom->Nlocal = atom->Nlocal;
c_atom->Nghost = atom->Nghost;
c_atom->ntypes = atom->ntypes;
if (atom->Nmax > c_atom->Nmax){ // the number of ghost atoms has increased -> more space is needed
c_atom->Nmax = atom->Nmax;
if(c_atom->x != NULL){ cudaFree(c_atom->x); }
if(c_atom->type != NULL){ cudaFree(c_atom->type); }
checkCUDAError( "updatePbc c_atom->x malloc", cudaMalloc((void**)&(c_atom->x), sizeof(MD_FLOAT) * atom->Nmax * 3) );
checkCUDAError( "updatePbc c_atom->type malloc", cudaMalloc((void**)&(c_atom->type), sizeof(int) * atom->Nmax) );
}
// TODO if the sort is reactivated the atom->vx needs to be copied to GPU as well
checkCUDAError( "updatePbc c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_atom->type memcpy", cudaMemcpy(c_atom->type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
if(c_NmaxGhost < NmaxGhost){
c_NmaxGhost = NmaxGhost;
if(c_PBCx != NULL){ cudaFree(c_PBCx); }
if(c_PBCy != NULL){ cudaFree(c_PBCy); }
if(c_PBCz != NULL){ cudaFree(c_PBCz); }
if(c_atom->border_map != NULL){ cudaFree(c_atom->border_map); }
checkCUDAError( "updatePbc c_PBCx malloc", cudaMalloc((void**)&c_PBCx, NmaxGhost * sizeof(int)) );
checkCUDAError( "updatePbc c_PBCy malloc", cudaMalloc((void**)&c_PBCy, NmaxGhost * sizeof(int)) );
checkCUDAError( "updatePbc c_PBCz malloc", cudaMalloc((void**)&c_PBCz, NmaxGhost * sizeof(int)) );
checkCUDAError( "updatePbc c_atom->border_map malloc", cudaMalloc((void**)&(c_atom->border_map), NmaxGhost * sizeof(int)) );
}
checkCUDAError( "updatePbc c_PBCx memcpy", cudaMemcpy(c_PBCx, PBCx, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_PBCy memcpy", cudaMemcpy(c_PBCy, PBCy, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_PBCz memcpy", cudaMemcpy(c_PBCz, PBCz, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_atom->border_map memcpy", cudaMemcpy(c_atom->border_map, atom->border_map, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
}
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nghost / (float)num_threads_per_block);
/*__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz,
* MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd)
* */
computePbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, c_PBCx, c_PBCy, c_PBCz, xprd, yprd, zprd);
checkCUDAError( "PeekAtLastError UpdatePbc", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync UpdatePbc", cudaDeviceSynchronize() );
}
void updateAtomsPbc_cuda(Atom* atom, Atom *c_atom, Parameter *param){
const int num_threads_per_block = get_num_threads();
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
/*void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd)*/
computeAtomsPbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, xprd, yprd, zprd);
checkCUDAError( "PeekAtLastError UpdateAtomsPbc", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync UpdateAtomsPbc", cudaDeviceSynchronize() );
checkCUDAError( "updateAtomsPbc position memcpy back", cudaMemcpy(atom->x, c_atom->x, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}

View File

@ -25,6 +25,29 @@
#ifndef __ATOM_H_ #ifndef __ATOM_H_
#define __ATOM_H_ #define __ATOM_H_
#ifdef CUDA_TARGET
# define KERNEL_NAME "CUDA"
# define computeForceLJFullNeigh computeForceLJFullNeigh_cuda
# define initialIntegrate initialIntegrate_cuda
# define finalIntegrate finalIntegrate_cuda
# define buildNeighbor buildNeighbor_cuda
# define updatePbc updatePbc_cuda
# define updateAtomsPbc updateAtomsPbc_cuda
#else
# ifdef USE_SIMD_KERNEL
# define KERNEL_NAME "SIMD"
# define computeForceLJFullNeigh computeForceLJFullNeigh_simd
# else
# define KERNEL_NAME "plain-C"
# define computeForceLJFullNeigh computeForceLJFullNeigh_plain_c
# endif
# define initialIntegrate initialIntegrate_cpu
# define finalIntegrate finalIntegrate_cpu
# define buildNeighbor buildNeighbor_cpu
# define updatePbc updatePbc_cpu
# define updateAtomsPbc updateAtomsPbc_cpu
#endif
typedef struct { typedef struct {
int Natoms, Nlocal, Nghost, Nmax; int Natoms, Nlocal, Nghost, Nmax;
MD_FLOAT *x, *y, *z; MD_FLOAT *x, *y, *z;

View File

@ -0,0 +1,10 @@
#include <cuda_runtime.h>
//---
#include <atom.h>
#include <neighbor.h>
#ifndef __CUDA_ATOM_H_
#define __CUDA_ATOM_H_
extern void initCuda(Atom*, Neighbor*, Atom*, Neighbor*);
extern void checkCUDAError(const char *msg, cudaError_t err);
#endif

View File

@ -0,0 +1,48 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <parameter.h>
#include <atom.h>
void initialIntegrate_cpu(bool reneigh, Parameter *param, Atom *atom, Atom *c_atom) {
for(int i = 0; i < atom->Nlocal; i++) {
atom_vx(i) += param->dtforce * atom_fx(i);
atom_vy(i) += param->dtforce * atom_fy(i);
atom_vz(i) += param->dtforce * atom_fz(i);
atom_x(i) = atom_x(i) + param->dt * atom_vx(i);
atom_y(i) = atom_y(i) + param->dt * atom_vy(i);
atom_z(i) = atom_z(i) + param->dt * atom_vz(i);
}
}
void finalIntegrate_cpu(bool reneigh, Parameter *param, Atom *atom, Atom *c_atom) {
for(int i = 0; i < atom->Nlocal; i++) {
atom_vx(i) += param->dtforce * atom_fx(i);
atom_vy(i) += param->dtforce * atom_fy(i);
atom_vz(i) += param->dtforce * atom_fz(i);
}
}
#ifdef CUDA_TARGET
void initialIntegrate_cuda(bool, Parameter*, Atom*, Atom*);
void finalIntegrate_cuda(bool, Parameter*, Atom*, Atom*);
#endif

View File

@ -34,9 +34,29 @@ typedef struct {
int* numneigh; int* numneigh;
} Neighbor; } Neighbor;
typedef struct {
MD_FLOAT xprd; MD_FLOAT yprd; MD_FLOAT zprd;
MD_FLOAT bininvx; MD_FLOAT bininvy; MD_FLOAT bininvz;
int mbinxlo; int mbinylo; int mbinzlo;
int nbinx; int nbiny; int nbinz;
int mbinx; int mbiny; int mbinz;
} Neighbor_params;
typedef struct {
int* bincount;
int* bins;
int mbins;
int atoms_per_bin;
} Binning;
extern void initNeighbor(Neighbor*, Parameter*); extern void initNeighbor(Neighbor*, Parameter*);
extern void setupNeighbor(Parameter*); extern void setupNeighbor(Parameter*);
extern void binatoms(Atom*); extern void binatoms(Atom*);
extern void buildNeighbor(Atom*, Neighbor*); extern void buildNeighbor_cpu(Atom*, Neighbor*, Atom*, Neighbor*);
extern void sortAtom(Atom*); extern void sortAtom(Atom*);
#ifdef CUDA_TARGET
extern void buildNeighbor_cuda(Atom*, Neighbor*, Atom*, Neighbor*);
#endif
#endif #endif

View File

@ -20,13 +20,21 @@
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>. * with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* ======================================================================================= * =======================================================================================
*/ */
#include <stdbool.h>
//---
#include <atom.h> #include <atom.h>
#include <parameter.h> #include <parameter.h>
#ifndef __PBC_H_ #ifndef __PBC_H_
#define __PBC_H_ #define __PBC_H_
extern void initPbc(); extern void initPbc();
extern void updatePbc(Atom*, Parameter*); extern void updatePbc_cpu(Atom*, Atom*, Parameter*, bool);
extern void updateAtomsPbc(Atom*, Parameter*); extern void updateAtomsPbc_cpu(Atom*, Atom*, Parameter*);
extern void setupPbc(Atom*, Parameter*); extern void setupPbc(Atom*, Parameter*);
#ifdef CUDA_TARGET
extern void updatePbc_cuda(Atom*, Atom*, Parameter*, bool);
extern void updateAtomsPbc_cuda(Atom*, Atom*, Parameter*);
#endif
#endif #endif

View File

@ -50,4 +50,6 @@ extern double myrandom(int*);
extern void random_reset(int *seed, int ibase, double *coord); extern void random_reset(int *seed, int ibase, double *coord);
extern int str2ff(const char *string); extern int str2ff(const char *string);
extern const char* ff2str(int ff); extern const char* ff2str(int ff);
extern int get_num_threads();
#endif #endif

View File

@ -42,6 +42,7 @@
#include <eam.h> #include <eam.h>
#include <vtk.h> #include <vtk.h>
#include <util.h> #include <util.h>
#include <integrate.h>
#define HLINE "----------------------------------------------------------------------------\n" #define HLINE "----------------------------------------------------------------------------\n"
@ -51,15 +52,12 @@ extern double computeForceLJHalfNeigh(Parameter*, Atom*, Neighbor*, Stats*);
extern double computeForceEam(Eam*, Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceEam(Eam*, Parameter*, Atom*, Neighbor*, Stats*);
extern double computeForceDemFullNeigh(Parameter*, Atom*, Neighbor*, Stats*); extern double computeForceDemFullNeigh(Parameter*, Atom*, Neighbor*, Stats*);
#ifdef USE_SIMD_KERNEL #ifdef CUDA_TARGET
# define KERNEL_NAME "SIMD" #include <cuda_atom.h>
# define computeForceLJFullNeigh computeForceLJFullNeigh_simd extern double computeForceLJFullNeigh_cuda(Parameter*, Atom*, Neighbor*, Atom*, Neighbor*);
#else
# define KERNEL_NAME "plain-C"
# define computeForceLJFullNeigh computeForceLJFullNeigh_plain_c
#endif #endif
double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *stats) { double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor, Stats *stats) {
if(param->force_field == FF_EAM) { initEam(eam, param); } if(param->force_field == FF_EAM) { initEam(eam, param); }
double S, E; double S, E;
param->lattice = pow((4.0 / param->rho), (1.0 / 3.0)); param->lattice = pow((4.0 / param->rho), (1.0 / 3.0));
@ -82,45 +80,29 @@ double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *
setupThermo(param, atom->Natoms); setupThermo(param, atom->Natoms);
if(param->input_file == NULL) { adjustThermo(param, atom); } if(param->input_file == NULL) { adjustThermo(param, atom); }
setupPbc(atom, param); setupPbc(atom, param);
updatePbc(atom, param); #ifdef CUDA_TARGET
buildNeighbor(atom, neighbor); initCuda(atom, neighbor, c_atom, c_neighbor);
#endif
updatePbc(atom, c_atom, param, true);
buildNeighbor(atom, neighbor, c_atom, c_neighbor);
E = getTimeStamp(); E = getTimeStamp();
return E-S; return E-S;
} }
double reneighbour(Parameter *param, Atom *atom, Neighbor *neighbor) { double reneighbour(Parameter *param, Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) {
double S, E; double S, E;
S = getTimeStamp(); S = getTimeStamp();
LIKWID_MARKER_START("reneighbour"); LIKWID_MARKER_START("reneighbour");
updateAtomsPbc(atom, param); updateAtomsPbc(atom, c_atom, param);
setupPbc(atom, param); setupPbc(atom, param);
updatePbc(atom, param); updatePbc(atom, c_atom, param, true);
//sortAtom(atom); //sortAtom(atom);
buildNeighbor(atom, neighbor); buildNeighbor(atom, neighbor, c_atom, c_neighbor);
LIKWID_MARKER_STOP("reneighbour"); LIKWID_MARKER_STOP("reneighbour");
E = getTimeStamp(); E = getTimeStamp();
return E-S; return E-S;
} }
void initialIntegrate(Parameter *param, Atom *atom) {
for(int i = 0; i < atom->Nlocal; i++) {
atom_vx(i) += param->dtforce * atom_fx(i);
atom_vy(i) += param->dtforce * atom_fy(i);
atom_vz(i) += param->dtforce * atom_fz(i);
atom_x(i) = atom_x(i) + param->dt * atom_vx(i);
atom_y(i) = atom_y(i) + param->dt * atom_vy(i);
atom_z(i) = atom_z(i) + param->dt * atom_vz(i);
}
}
void finalIntegrate(Parameter *param, Atom *atom) {
for(int i = 0; i < atom->Nlocal; i++) {
atom_vx(i) += param->dtforce * atom_fx(i);
atom_vy(i) += param->dtforce * atom_fy(i);
atom_vz(i) += param->dtforce * atom_fz(i);
}
}
void printAtomState(Atom *atom) { void printAtomState(Atom *atom) {
printf("Atom counts: Natoms=%d Nlocal=%d Nghost=%d Nmax=%d\n", atom->Natoms, atom->Nlocal, atom->Nghost, atom->Nmax); printf("Atom counts: Natoms=%d Nlocal=%d Nghost=%d Nmax=%d\n", atom->Natoms, atom->Nlocal, atom->Nghost, atom->Nmax);
// int nall = atom->Nlocal + atom->Nghost; // int nall = atom->Nlocal + atom->Nghost;
@ -129,7 +111,7 @@ void printAtomState(Atom *atom) {
// } // }
} }
double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) { double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor, Stats *stats) {
if(param->force_field == FF_EAM) { if(param->force_field == FF_EAM) {
return computeForceEam(eam, param, atom, neighbor, stats); return computeForceEam(eam, param, atom, neighbor, stats);
} else if(param->force_field == FF_DEM) { } else if(param->force_field == FF_DEM) {
@ -145,14 +127,18 @@ double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor,
return computeForceLJHalfNeigh(param, atom, neighbor, stats); return computeForceLJHalfNeigh(param, atom, neighbor, stats);
} }
#ifdef CUDA_TARGET
return computeForceLJFullNeigh(param, atom, neighbor, c_atom, c_neighbor);
#else
return computeForceLJFullNeigh(param, atom, neighbor, stats); return computeForceLJFullNeigh(param, atom, neighbor, stats);
#endif
} }
int main(int argc, char** argv) { int main(int argc, char** argv) {
double timer[NUMTIMER]; double timer[NUMTIMER];
Eam eam; Eam eam;
Atom atom; Atom atom, c_atom;
Neighbor neighbor; Neighbor neighbor, c_neighbor;
Stats stats; Stats stats;
Parameter param; Parameter param;
@ -240,16 +226,16 @@ int main(int argc, char** argv) {
} }
param.cutneigh = param.cutforce + param.skin; param.cutneigh = param.cutforce + param.skin;
setup(&param, &eam, &atom, &neighbor, &stats); setup(&param, &eam, &atom, &neighbor, &c_atom, &c_neighbor, &stats);
printParameter(&param); printParameter(&param);
printf("step\ttemp\t\tpressure\n"); printf("step\ttemp\t\tpressure\n");
computeThermo(0, &param, &atom); computeThermo(0, &param, &atom);
#if defined(MEM_TRACER) || defined(INDEX_TRACER) #if defined(MEM_TRACER) || defined(INDEX_TRACER)
traceAddresses(&param, &atom, &neighbor, n + 1); traceAddresses(&param, &atom, &neighbor, n + 1);
#endif #endif
timer[FORCE] = computeForce(&eam, &param, &atom, &neighbor, &stats); timer[FORCE] = computeForce(&eam, &param, &atom, &neighbor, &c_atom, &c_neighbor, &stats);
timer[NEIGH] = 0.0; timer[NEIGH] = 0.0;
timer[TOTAL] = getTimeStamp(); timer[TOTAL] = getTimeStamp();
@ -258,21 +244,26 @@ int main(int argc, char** argv) {
} }
for(int n = 0; n < param.ntimes; n++) { for(int n = 0; n < param.ntimes; n++) {
initialIntegrate(&param, &atom); bool reneigh = (n + 1) % param.reneigh_every == 0;
initialIntegrate(reneigh, &param, &atom, &c_atom);
if((n + 1) % param.reneigh_every) { if((n + 1) % param.reneigh_every) {
updatePbc(&atom, &param); updatePbc(&atom, &c_atom, &param, false);
} else { } else {
timer[NEIGH] += reneighbour(&param, &atom, &neighbor); timer[NEIGH] += reneighbour(&param, &atom, &neighbor, &c_atom, &c_neighbor);
} }
#if defined(MEM_TRACER) || defined(INDEX_TRACER) #if defined(MEM_TRACER) || defined(INDEX_TRACER)
traceAddresses(&param, &atom, &neighbor, n + 1); traceAddresses(&param, &atom, &neighbor, n + 1);
#endif #endif
timer[FORCE] += computeForce(&eam, &param, &atom, &neighbor, &stats); timer[FORCE] += computeForce(&eam, &param, &atom, &neighbor, &c_atom, &c_neighbor, &stats);
finalIntegrate(&param, &atom); finalIntegrate(reneigh, &param, &atom, &c_atom);
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
#ifdef CUDA_TARGET
checkCUDAError("computeThermo atom->x memcpy back", cudaMemcpy(atom.x, c_atom.x, atom.Nmax * sizeof(MD_FLOAT) * 3, cudaMemcpyDeviceToHost));
#endif
computeThermo(n + 1, &param, &atom); computeThermo(n + 1, &param, &atom);
} }
@ -287,11 +278,11 @@ int main(int argc, char** argv) {
printf(HLINE); printf(HLINE);
printf("Force field: %s\n", ff2str(param.force_field)); printf("Force field: %s\n", ff2str(param.force_field));
printf("Data layout for positions: %s\n", POS_DATA_LAYOUT); printf("Data layout for positions: %s\n", POS_DATA_LAYOUT);
#if PRECISION == 1 #if PRECISION == 1
printf("Using single precision floating point.\n"); printf("Using single precision floating point.\n");
#else #else
printf("Using double precision floating point.\n"); printf("Using double precision floating point.\n");
#endif #endif
printf(HLINE); printf(HLINE);
printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, atom.Nghost, param.ntimes); printf("System: %d atoms %d ghost atoms, Steps: %d\n", atom.Natoms, atom.Nghost, param.ntimes);
printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs\n", printf("TOTAL %.2fs FORCE %.2fs NEIGH %.2fs REST %.2fs\n",

View File

@ -169,7 +169,7 @@ void setupNeighbor(Parameter* param) {
bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int)); bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int));
} }
void buildNeighbor(Atom *atom, Neighbor *neighbor) { void buildNeighbor_cpu(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) {
int nall = atom->Nlocal + atom->Nghost; int nall = atom->Nlocal + atom->Nghost;
/* extend atom arrays if necessary */ /* extend atom arrays if necessary */

View File

@ -20,9 +20,10 @@
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>. * with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* ======================================================================================= * =======================================================================================
*/ */
#include <stdbool.h>
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
//---
#include <pbc.h> #include <pbc.h>
#include <atom.h> #include <atom.h>
#include <allocate.h> #include <allocate.h>
@ -43,7 +44,7 @@ void initPbc(Atom* atom) {
/* update coordinates of ghost atoms */ /* update coordinates of ghost atoms */
/* uses mapping created in setupPbc */ /* uses mapping created in setupPbc */
void updatePbc(Atom *atom, Parameter *param) { void updatePbc_cpu(Atom *atom, Atom *c_atom, Parameter *param, bool doReneighbor) {
int *border_map = atom->border_map; int *border_map = atom->border_map;
int nlocal = atom->Nlocal; int nlocal = atom->Nlocal;
MD_FLOAT xprd = param->xprd; MD_FLOAT xprd = param->xprd;
@ -59,7 +60,7 @@ void updatePbc(Atom *atom, Parameter *param) {
/* relocate atoms that have left domain according /* relocate atoms that have left domain according
* to periodic boundary conditions */ * to periodic boundary conditions */
void updateAtomsPbc(Atom *atom, Parameter *param) { void updateAtomsPbc_cpu(Atom *atom, Atom *c_atom, Parameter *param) {
MD_FLOAT xprd = param->xprd; MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd; MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd; MD_FLOAT zprd = param->zprd;

View File

@ -32,8 +32,7 @@
#define IR 2836 #define IR 2836
#define MASK 123459876 #define MASK 123459876
double myrandom(int* seed) double myrandom(int* seed) {
{
int k= (*seed) / IQ; int k= (*seed) / IQ;
double ans; double ans;
@ -43,8 +42,7 @@ double myrandom(int* seed)
return ans; return ans;
} }
void random_reset(int *seed, int ibase, double *coord) void random_reset(int *seed, int ibase, double *coord) {
{
int i; int i;
char *str = (char *) &ibase; char *str = (char *) &ibase;
int n = sizeof(int); int n = sizeof(int);
@ -80,18 +78,21 @@ void random_reset(int *seed, int ibase, double *coord)
//save = 0; //save = 0;
} }
int str2ff(const char *string) int str2ff(const char *string) {
{
if(strncmp(string, "lj", 2) == 0) return FF_LJ; if(strncmp(string, "lj", 2) == 0) return FF_LJ;
if(strncmp(string, "eam", 3) == 0) return FF_EAM; if(strncmp(string, "eam", 3) == 0) return FF_EAM;
if(strncmp(string, "dem", 3) == 0) return FF_DEM; if(strncmp(string, "dem", 3) == 0) return FF_DEM;
return -1; return -1;
} }
const char* ff2str(int ff) const char* ff2str(int ff) {
{
if(ff == FF_LJ) { return "lj"; } if(ff == FF_LJ) { return "lj"; }
if(ff == FF_EAM) { return "eam"; } if(ff == FF_EAM) { return "eam"; }
if(ff == FF_DEM) { return "dem"; } if(ff == FF_DEM) { return "dem"; }
return "invalid"; return "invalid";
} }
int get_num_threads() {
const char *num_threads_env = getenv("NUM_THREADS");
return (num_threads_env == NULL) ? 32 : atoi(num_threads_env);
}