Integrate LAMMPS CUDA versions into master branch

Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
Rafael Ravedutti
2022-08-09 18:53:53 +02:00
parent eb77e1a3bd
commit c18124b066
19 changed files with 1004 additions and 92 deletions

76
lammps/cuda/atom.cu Normal file
View File

@@ -0,0 +1,76 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
extern "C" {
#include <stdio.h>
#include <cuda_runtime.h>
//---
#include <allocate.h>
#include <atom.h>
#include <cuda_atom.h>
#include <neighbor.h>
void initCuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) {
c_atom->Natoms = atom->Natoms;
c_atom->Nlocal = atom->Nlocal;
c_atom->Nghost = atom->Nghost;
c_atom->Nmax = atom->Nmax;
c_atom->ntypes = atom->ntypes;
c_atom->border_map = NULL;
const int Nlocal = atom->Nlocal;
checkCUDAError( "c_atom->x malloc", cudaMalloc((void**)&(c_atom->x), sizeof(MD_FLOAT) * atom->Nmax * 3) );
checkCUDAError( "c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->fx malloc", cudaMalloc((void**)&(c_atom->fx), sizeof(MD_FLOAT) * Nlocal * 3) );
checkCUDAError( "c_atom->vx malloc", cudaMalloc((void**)&(c_atom->vx), sizeof(MD_FLOAT) * Nlocal * 3) );
checkCUDAError( "c_atom->vx memcpy", cudaMemcpy(c_atom->vx, atom->vx, sizeof(MD_FLOAT) * Nlocal * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->type malloc", cudaMalloc((void**)&(c_atom->type), sizeof(int) * atom->Nmax) );
checkCUDAError( "c_atom->epsilon malloc", cudaMalloc((void**)&(c_atom->epsilon), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom->sigma6 malloc", cudaMalloc((void**)&(c_atom->sigma6), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom->cutforcesq malloc", cudaMalloc((void**)&(c_atom->cutforcesq), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_neighbor->neighbors malloc", cudaMalloc((void**)&c_neighbor->neighbors, sizeof(int) * Nlocal * neighbor->maxneighs) );
checkCUDAError( "c_neighbor->numneigh malloc", cudaMalloc((void**)&c_neighbor->numneigh, sizeof(int) * Nlocal) );
checkCUDAError( "c_atom->type memcpy", cudaMemcpy(c_atom->type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->sigma6 memcpy", cudaMemcpy(c_atom->sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->epsilon memcpy", cudaMemcpy(c_atom->epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom->cutforcesq memcpy", cudaMemcpy(c_atom->cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
}
void checkCUDAError(const char *msg, cudaError_t err) {
if (err != cudaSuccess) {
//print a human readable error message
printf("[CUDA ERROR %s]: %s\r\n", msg, cudaGetErrorString(err));
exit(-1);
}
}
}

202
lammps/cuda/force.cu Normal file
View File

@@ -0,0 +1,202 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
//---
#include <cuda_profiler_api.h>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
//---
#include <likwid-marker.h>
extern "C" {
#include <atom.h>
#include <cuda_atom.h>
#include <allocate.h>
#include <neighbor.h>
#include <parameter.h>
#include <timing.h>
#include <util.h>
}
// cuda kernel
__global__ void calc_force(Atom a, MD_FLOAT cutforcesq, MD_FLOAT sigma6, MD_FLOAT epsilon, int Nlocal, int neigh_maxneighs, int *neigh_neighbors, int *neigh_numneigh) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= Nlocal) {
return;
}
Atom *atom = &a;
const int numneighs = neigh_numneigh[i];
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
MD_FLOAT fix = 0;
MD_FLOAT fiy = 0;
MD_FLOAT fiz = 0;
for(int k = 0; k < numneighs; k++) {
int j = neigh_neighbors[atom->Nlocal * k + i];
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
const MD_FLOAT sigma6 = atom->sigma6[type_ij];
const MD_FLOAT epsilon = atom->epsilon[type_ij];
#endif
if(rsq < cutforcesq) {
MD_FLOAT sr2 = 1.0 / rsq;
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
fix += delx * force;
fiy += dely * force;
fiz += delz * force;
}
}
atom_fx(i) = fix;
atom_fy(i) = fiy;
atom_fz(i) = fiz;
}
__global__ void kernel_initial_integrate(MD_FLOAT dtforce, MD_FLOAT dt, int Nlocal, Atom a) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if( i >= Nlocal ) {
return;
}
Atom *atom = &a;
atom_vx(i) += dtforce * atom_fx(i);
atom_vy(i) += dtforce * atom_fy(i);
atom_vz(i) += dtforce * atom_fz(i);
atom_x(i) = atom_x(i) + dt * atom_vx(i);
atom_y(i) = atom_y(i) + dt * atom_vy(i);
atom_z(i) = atom_z(i) + dt * atom_vz(i);
}
__global__ void kernel_final_integrate(MD_FLOAT dtforce, int Nlocal, Atom a) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if( i >= Nlocal ) {
return;
}
Atom *atom = &a;
atom_vx(i) += dtforce * atom_fx(i);
atom_vy(i) += dtforce * atom_fy(i);
atom_vz(i) += dtforce * atom_fz(i);
}
extern "C" {
void finalIntegrate_cuda(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom) {
const int Nlocal = atom->Nlocal;
const int num_threads_per_block = get_num_threads();
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_final_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, Nlocal, *c_atom);
checkCUDAError( "PeekAtLastError FinalIntegrate", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync FinalIntegrate", cudaDeviceSynchronize() );
if(doReneighbour) {
checkCUDAError( "FinalIntegrate: velocity memcpy", cudaMemcpy(atom->vx, c_atom->vx, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}
}
void initialIntegrate_cuda(bool doReneighbour, Parameter *param, Atom *atom, Atom *c_atom) {
const int Nlocal = atom->Nlocal;
const int num_threads_per_block = get_num_threads();
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_initial_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, param->dt, Nlocal, *c_atom);
checkCUDAError( "PeekAtLastError InitialIntegrate", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync InitialIntegrate", cudaDeviceSynchronize() );
if(doReneighbour) {
checkCUDAError( "InitialIntegrate: velocity memcpy", cudaMemcpy(atom->vx, c_atom->vx, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}
}
double computeForceLJFullNeigh_cuda(Parameter *param, Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) {
const int num_threads_per_block = get_num_threads();
int Nlocal = atom->Nlocal;
#ifndef EXPLICIT_TYPES
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
MD_FLOAT sigma6 = param->sigma6;
MD_FLOAT epsilon = param->epsilon;
#endif
/*
int nDevices;
cudaGetDeviceCount(&nDevices);
size_t free, total;
for(int i = 0; i < nDevices; ++i) {
cudaMemGetInfo( &free, &total );
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, i);
printf("DEVICE %d/%d NAME: %s\r\n with %ld MB/%ld MB memory used", i + 1, nDevices, prop.name, free / 1024 / 1024, total / 1024 / 1024);
}
*/
// HINT: Run with cuda-memcheck ./MDBench-NVCC in case of error
// checkCUDAError( "c_atom->fx memset", cudaMemset(c_atom->fx, 0, sizeof(MD_FLOAT) * Nlocal * 3) );
cudaProfilerStart();
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
double S = getTimeStamp();
LIKWID_MARKER_START("force");
calc_force <<< num_blocks, num_threads_per_block >>> (*c_atom, cutforcesq, sigma6, epsilon, Nlocal, neighbor->maxneighs, c_neighbor->neighbors, c_neighbor->numneigh);
checkCUDAError( "PeekAtLastError ComputeForce", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync ComputeForce", cudaDeviceSynchronize() );
cudaProfilerStop();
LIKWID_MARKER_STOP("force");
double E = getTimeStamp();
return E-S;
}
}

329
lammps/cuda/neighbor.cu Normal file
View File

@@ -0,0 +1,329 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <cuda_profiler_api.h>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
//---
extern "C" {
#include <atom.h>
#include <cuda_atom.h>
#include <parameter.h>
#include <neighbor.h>
#include <util.h>
}
static MD_FLOAT xprd, yprd, zprd;
static MD_FLOAT bininvx, bininvy, bininvz;
static int mbinxlo, mbinylo, mbinzlo;
static int nbinx, nbiny, nbinz;
static int mbinx, mbiny, mbinz; // n bins in x, y, z
static int mbins; //total number of bins
static int atoms_per_bin; // max atoms per bin
static MD_FLOAT cutneighsq; // neighbor cutoff squared
static int nmax;
static int nstencil; // # of bins in stencil
static int* stencil; // stencil list of bin offsets
static int* c_stencil = NULL;
static int* c_resize_needed = NULL;
static int* c_new_maxneighs = NULL;
static Binning c_binning {
.bincount = NULL,
.bins = NULL,
.mbins = 0,
.atoms_per_bin = 0
};
__device__ int coord2bin_device(MD_FLOAT xin, MD_FLOAT yin, MD_FLOAT zin, Neighbor_params np) {
int ix, iy, iz;
if(xin >= np.xprd) {
ix = (int)((xin - np.xprd) * np.bininvx) + np.nbinx - np.mbinxlo;
} else if(xin >= 0.0) {
ix = (int)(xin * np.bininvx) - np.mbinxlo;
} else {
ix = (int)(xin * np.bininvx) - np.mbinxlo - 1;
}
if(yin >= np.yprd) {
iy = (int)((yin - np.yprd) * np.bininvy) + np.nbiny - np.mbinylo;
} else if(yin >= 0.0) {
iy = (int)(yin * np.bininvy) - np.mbinylo;
} else {
iy = (int)(yin * np.bininvy) - np.mbinylo - 1;
}
if(zin >= np.zprd) {
iz = (int)((zin - np.zprd) * np.bininvz) + np.nbinz - np.mbinzlo;
} else if(zin >= 0.0) {
iz = (int)(zin * np.bininvz) - np.mbinzlo;
} else {
iz = (int)(zin * np.bininvz) - np.mbinzlo - 1;
}
return (iz * np.mbiny * np.mbinx + iy * np.mbinx + ix + 1);
}
/* sorts the contents of a bin to make it comparable to the CPU version */
/* uses bubble sort since atoms per bin should be relatively small and can be done in situ */
__global__ void sort_bin_contents_kernel(int* bincount, int* bins, int mbins, int atoms_per_bin){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= mbins) {
return;
}
int atoms_in_bin = bincount[i];
int *bin_ptr = &bins[i * atoms_per_bin];
int sorted;
do {
sorted = 1;
int tmp;
for(int index = 0; index < atoms_in_bin - 1; index++){
if (bin_ptr[index] > bin_ptr[index + 1]){
tmp = bin_ptr[index];
bin_ptr[index] = bin_ptr[index + 1];
bin_ptr[index + 1] = tmp;
sorted = 0;
}
}
} while (!sorted);
}
__global__ void binatoms_kernel(Atom a, int* bincount, int* bins, int atoms_per_bin, Neighbor_params np, int *resize_needed){
Atom* atom = &a;
const int i = blockIdx.x * blockDim.x + threadIdx.x;
int nall = atom->Nlocal + atom->Nghost;
if(i >= nall){
return;
}
MD_FLOAT x = atom_x(i);
MD_FLOAT y = atom_y(i);
MD_FLOAT z = atom_z(i);
int ibin = coord2bin_device(x, y, z, np);
int ac = atomicAdd(&bincount[ibin], 1);
if(ac < atoms_per_bin){
bins[ibin * atoms_per_bin + ac] = i;
} else {
atomicMax(resize_needed, ac);
}
}
__global__ void compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil,
int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs, MD_FLOAT cutneighsq){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nlocal = a.Nlocal;
if( i >= Nlocal ) {
return;
}
Atom *atom = &a;
Neighbor *neighbor = &neigh;
int* neighptr = &(neighbor->neighbors[i]);
int n = 0;
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
int ibin = coord2bin_device(xtmp, ytmp, ztmp, np);
#ifdef EXPLICIT_TYPES
int type_i = atom->type[i];
#endif
for(int k = 0; k < nstencil; k++) {
int jbin = ibin + stencil[k];
int* loc_bin = &bins[jbin * atoms_per_bin];
for(int m = 0; m < bincount[jbin]; m++) {
int j = loc_bin[m];
if ( j == i ){
continue;
}
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
int type_j = atom->type[j];
const MD_FLOAT cutoff = atom->cutneighsq[type_i * atom->ntypes + type_j];
#else
const MD_FLOAT cutoff = cutneighsq;
#endif
if( rsq <= cutoff ) {
int idx = atom->Nlocal * n;
neighptr[idx] = j;
n += 1;
}
}
}
neighbor->numneigh[i] = n;
if(n > neighbor->maxneighs) {
atomicMax(new_maxneighs, n);
}
}
void binatoms_cuda(Atom *c_atom, Binning *c_binning, int *c_resize_needed, Neighbor_params *np, const int threads_per_block) {
int nall = c_atom->Nlocal + c_atom->Nghost;
int resize = 1;
const int num_blocks = ceil((float) nall / (float) threads_per_block);
while(resize > 0) {
resize = 0;
checkCUDAError("binatoms_cuda c_binning->bincount memset", cudaMemset(c_binning->bincount, 0, c_binning->mbins * sizeof(int)));
checkCUDAError("binatoms_cuda c_resize_needed memset", cudaMemset(c_resize_needed, 0, sizeof(int)) );
/*binatoms_kernel(Atom a, int* bincount, int* bins, int c_binning->atoms_per_bin, Neighbor_params np, int *resize_needed) */
binatoms_kernel<<<num_blocks, threads_per_block>>>(*c_atom, c_binning->bincount, c_binning->bins, c_binning->atoms_per_bin, *np, c_resize_needed);
checkCUDAError( "PeekAtLastError binatoms kernel", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync binatoms kernel", cudaDeviceSynchronize() );
checkCUDAError("binatoms_cuda c_resize_needed memcpy back", cudaMemcpy(&resize, c_resize_needed, sizeof(int), cudaMemcpyDeviceToHost) );
if(resize) {
cudaFree(c_binning->bins);
c_binning->atoms_per_bin *= 2;
checkCUDAError("binatoms_cuda c_binning->bins resize malloc", cudaMalloc(&c_binning->bins, c_binning->mbins * c_binning->atoms_per_bin * sizeof(int)) );
}
}
atoms_per_bin = c_binning->atoms_per_bin;
const int sortBlocks = ceil((float)mbins / (float)threads_per_block);
/*void sort_bin_contents_kernel(int* bincount, int* bins, int mbins, int atoms_per_bin)*/
sort_bin_contents_kernel<<<sortBlocks, threads_per_block>>>(c_binning->bincount, c_binning->bins, c_binning->mbins, c_binning->atoms_per_bin);
checkCUDAError( "PeekAtLastError sort_bin_contents kernel", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync sort_bin_contents kernel", cudaDeviceSynchronize() );
}
void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) {
const int num_threads_per_block = get_num_threads();
int nall = atom->Nlocal + atom->Nghost;
c_neighbor->maxneighs = neighbor->maxneighs;
cudaProfilerStart();
/* upload stencil */
// TODO move all of this initialization into its own method
if(c_stencil == NULL){
checkCUDAError( "buildNeighbor c_n_stencil malloc", cudaMalloc((void**)&c_stencil, nstencil * sizeof(int)) );
checkCUDAError( "buildNeighbor c_n_stencil memcpy", cudaMemcpy(c_stencil, stencil, nstencil * sizeof(int), cudaMemcpyHostToDevice ));
}
if(c_binning.mbins == 0){
c_binning.mbins = mbins;
c_binning.atoms_per_bin = atoms_per_bin;
checkCUDAError( "buildNeighbor c_binning->bincount malloc", cudaMalloc((void**)&(c_binning.bincount), c_binning.mbins * sizeof(int)) );
checkCUDAError( "buidlNeighbor c_binning->bins malloc", cudaMalloc((void**)&(c_binning.bins), c_binning.mbins * c_binning.atoms_per_bin * sizeof(int)) );
}
Neighbor_params np {
.xprd = xprd,
.yprd = yprd,
.zprd = zprd,
.bininvx = bininvx,
.bininvy = bininvy,
.bininvz = bininvz,
.mbinxlo = mbinxlo,
.mbinylo = mbinylo,
.mbinzlo = mbinzlo,
.nbinx = nbinx,
.nbiny = nbiny,
.nbinz = nbinz,
.mbinx = mbinx,
.mbiny = mbiny,
.mbinz = mbinz
};
if(c_resize_needed == NULL){
checkCUDAError("buildNeighbor c_resize_needed malloc", cudaMalloc((void**)&c_resize_needed, sizeof(int)) );
}
/* bin local & ghost atoms */
binatoms_cuda(c_atom, &c_binning, c_resize_needed, &np, num_threads_per_block);
if(c_new_maxneighs == NULL){
checkCUDAError("c_new_maxneighs malloc", cudaMalloc((void**)&c_new_maxneighs, sizeof(int) ));
}
int resize = 1;
/* extend c_neighbor arrays if necessary */
if(nall > nmax) {
nmax = nall;
if(c_neighbor->numneigh) cudaFree(c_neighbor->numneigh);
if(c_neighbor->neighbors) cudaFree(c_neighbor->neighbors);
checkCUDAError( "buildNeighbor c_numneigh malloc", cudaMalloc((void**)&(c_neighbor->numneigh), nmax * sizeof(int)) );
checkCUDAError( "buildNeighbor c_neighbors malloc", cudaMalloc((void**)&(c_neighbor->neighbors), nmax * c_neighbor->maxneighs * sizeof(int)) );
}
/* loop over each atom, storing neighbors */
while(resize) {
resize = 0;
checkCUDAError("c_new_maxneighs memset", cudaMemset(c_new_maxneighs, 0, sizeof(int) ));
// TODO call compute_neigborhood kernel here
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
/*compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil,
int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs)
* */
compute_neighborhood<<<num_blocks, num_threads_per_block>>>(*c_atom, *c_neighbor,
np, nstencil, c_stencil,
c_binning.bins, c_binning.atoms_per_bin, c_binning.bincount,
c_new_maxneighs,
cutneighsq);
checkCUDAError( "PeekAtLastError ComputeNeighbor", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync ComputeNeighbor", cudaDeviceSynchronize() );
// TODO copy the value of c_new_maxneighs back to host and check if it has been modified
int new_maxneighs;
checkCUDAError("c_new_maxneighs memcpy back", cudaMemcpy(&new_maxneighs, c_new_maxneighs, sizeof(int), cudaMemcpyDeviceToHost));
if (new_maxneighs > c_neighbor->maxneighs){
resize = 1;
}
if(resize) {
printf("RESIZE %d\n", c_neighbor->maxneighs);
c_neighbor->maxneighs = new_maxneighs * 1.2;
printf("NEW SIZE %d\n", c_neighbor->maxneighs);
cudaFree(c_neighbor->neighbors);
checkCUDAError("c_neighbor->neighbors resize malloc", cudaMalloc((void**)(&c_neighbor->neighbors), c_atom->Nmax * c_neighbor->maxneighs * sizeof(int)));
}
}
neighbor->maxneighs = c_neighbor->maxneighs;
cudaProfilerStop();
}

151
lammps/cuda/pbc.cu Normal file
View File

@@ -0,0 +1,151 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
//---
extern "C" {
#include <allocate.h>
#include <atom.h>
#include <cuda_atom.h>
#include <pbc.h>
#include <util.h>
}
static int NmaxGhost;
static int *PBCx, *PBCy, *PBCz;
static int c_NmaxGhost = 0;
static int *c_PBCx = NULL, *c_PBCy = NULL, *c_PBCz = NULL;
__global__ void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
Atom* atom = &a;
if( i >= atom->Nlocal ){
return;
}
if (atom_x(i) < 0.0) {
atom_x(i) += xprd;
} else if (atom_x(i) >= xprd) {
atom_x(i) -= xprd;
}
if (atom_y(i) < 0.0) {
atom_y(i) += yprd;
} else if (atom_y(i) >= yprd) {
atom_y(i) -= yprd;
}
if (atom_z(i) < 0.0) {
atom_z(i) += zprd;
} else if (atom_z(i) >= zprd) {
atom_z(i) -= zprd;
}
}
__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nghost = a.Nghost;
if( i >= Nghost ) {
return;
}
Atom* atom = &a;
int *border_map = atom->border_map;
int nlocal = atom->Nlocal;
atom_x(nlocal + i) = atom_x(border_map[i]) + PBCx[i] * xprd;
atom_y(nlocal + i) = atom_y(border_map[i]) + PBCy[i] * yprd;
atom_z(nlocal + i) = atom_z(border_map[i]) + PBCz[i] * zprd;
}
/* update coordinates of ghost atoms */
/* uses mapping created in setupPbc */
void updatePbc_cuda(Atom *atom, Atom *c_atom, Parameter *param, bool doReneighbor) {
const int num_threads_per_block = get_num_threads();
if (doReneighbor){
c_atom->Natoms = atom->Natoms;
c_atom->Nlocal = atom->Nlocal;
c_atom->Nghost = atom->Nghost;
c_atom->ntypes = atom->ntypes;
if (atom->Nmax > c_atom->Nmax){ // the number of ghost atoms has increased -> more space is needed
c_atom->Nmax = atom->Nmax;
if(c_atom->x != NULL){ cudaFree(c_atom->x); }
if(c_atom->type != NULL){ cudaFree(c_atom->type); }
checkCUDAError( "updatePbc c_atom->x malloc", cudaMalloc((void**)&(c_atom->x), sizeof(MD_FLOAT) * atom->Nmax * 3) );
checkCUDAError( "updatePbc c_atom->type malloc", cudaMalloc((void**)&(c_atom->type), sizeof(int) * atom->Nmax) );
}
// TODO if the sort is reactivated the atom->vx needs to be copied to GPU as well
checkCUDAError( "updatePbc c_atom->x memcpy", cudaMemcpy(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_atom->type memcpy", cudaMemcpy(c_atom->type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
if(c_NmaxGhost < NmaxGhost){
c_NmaxGhost = NmaxGhost;
if(c_PBCx != NULL){ cudaFree(c_PBCx); }
if(c_PBCy != NULL){ cudaFree(c_PBCy); }
if(c_PBCz != NULL){ cudaFree(c_PBCz); }
if(c_atom->border_map != NULL){ cudaFree(c_atom->border_map); }
checkCUDAError( "updatePbc c_PBCx malloc", cudaMalloc((void**)&c_PBCx, NmaxGhost * sizeof(int)) );
checkCUDAError( "updatePbc c_PBCy malloc", cudaMalloc((void**)&c_PBCy, NmaxGhost * sizeof(int)) );
checkCUDAError( "updatePbc c_PBCz malloc", cudaMalloc((void**)&c_PBCz, NmaxGhost * sizeof(int)) );
checkCUDAError( "updatePbc c_atom->border_map malloc", cudaMalloc((void**)&(c_atom->border_map), NmaxGhost * sizeof(int)) );
}
checkCUDAError( "updatePbc c_PBCx memcpy", cudaMemcpy(c_PBCx, PBCx, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_PBCy memcpy", cudaMemcpy(c_PBCy, PBCy, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_PBCz memcpy", cudaMemcpy(c_PBCz, PBCz, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
checkCUDAError( "updatePbc c_atom->border_map memcpy", cudaMemcpy(c_atom->border_map, atom->border_map, NmaxGhost * sizeof(int), cudaMemcpyHostToDevice) );
}
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nghost / (float)num_threads_per_block);
/*__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz,
* MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd)
* */
computePbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, c_PBCx, c_PBCy, c_PBCz, xprd, yprd, zprd);
checkCUDAError( "PeekAtLastError UpdatePbc", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync UpdatePbc", cudaDeviceSynchronize() );
}
void updateAtomsPbc_cuda(Atom* atom, Atom *c_atom, Parameter *param){
const int num_threads_per_block = get_num_threads();
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
/*void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd)*/
computeAtomsPbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, xprd, yprd, zprd);
checkCUDAError( "PeekAtLastError UpdateAtomsPbc", cudaPeekAtLastError() );
checkCUDAError( "DeviceSync UpdateAtomsPbc", cudaDeviceSynchronize() );
checkCUDAError( "updateAtomsPbc position memcpy back", cudaMemcpy(atom->x, c_atom->x, sizeof(MD_FLOAT) * atom->Nlocal * 3, cudaMemcpyDeviceToHost) );
}