Create separate structs DeviceAtom and DeviceNeighbor with device pointers

Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
Rafael Ravedutti 2022-08-12 17:28:06 +02:00
parent 065b596074
commit 939197a785
13 changed files with 172 additions and 153 deletions

View File

@ -62,6 +62,17 @@ void initAtom(Atom *atom) {
atom->radius = NULL; atom->radius = NULL;
atom->av = NULL; atom->av = NULL;
atom->r = NULL; atom->r = NULL;
DeviceAtom *d_atom = &(atom->d_atom);
d_atom->x = NULL; d_atom->y = NULL; d_atom->z = NULL;
d_atom->vx = NULL; d_atom->vy = NULL; d_atom->vz = NULL;
d_atom->fx = NULL; d_atom->fy = NULL; d_atom->fz = NULL;
d_atom->border_map = NULL;
d_atom->type = NULL;
d_atom->epsilon = NULL;
d_atom->sigma6 = NULL;
d_atom->cutforcesq = NULL;
d_atom->cutneighsq = NULL;
} }
void createAtom(Atom *atom, Parameter *param) { void createAtom(Atom *atom, Parameter *param) {
@ -513,25 +524,32 @@ int readAtom_in(Atom* atom, Parameter* param) {
} }
void growAtom(Atom *atom) { void growAtom(Atom *atom) {
DeviceAtom *d_atom = &(atom->d_atom);
int nold = atom->Nmax; int nold = atom->Nmax;
atom->Nmax += DELTA; atom->Nmax += DELTA;
#undef REALLOC
#define REALLOC(p,t,ns,os); \
atom->p = (t *) reallocate(atom->p, ALIGNMENT, ns, os); \
atom->d_atom.p = (t *) reallocateGPU(atom->d_atom.p, ns);
#ifdef AOS #ifdef AOS
atom->x = (MD_FLOAT*) reallocate(atom->x, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3); REALLOC(x, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3);
atom->vx = (MD_FLOAT*) reallocate(atom->vx, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3); REALLOC(vx, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3);
atom->fx = (MD_FLOAT*) reallocate(atom->fx, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3); REALLOC(fx, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3);
#else #else
atom->x = (MD_FLOAT*) reallocate(atom->x, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); REALLOC(x, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
atom->y = (MD_FLOAT*) reallocate(atom->y, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); REALLOC(y, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
atom->z = (MD_FLOAT*) reallocate(atom->z, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); REALLOC(z, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
atom->vx = (MD_FLOAT*) reallocate(atom->vx, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); REALLOC(vx, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
atom->vy = (MD_FLOAT*) reallocate(atom->vy, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); REALLOC(vy, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
atom->vz = (MD_FLOAT*) reallocate(atom->vz, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); REALLOC(vz, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
atom->fx = (MD_FLOAT*) reallocate(atom->fx, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); REALLOC(fx, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
atom->fy = (MD_FLOAT*) reallocate(atom->fy, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); REALLOC(fy, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
atom->fz = (MD_FLOAT*) reallocate(atom->fz, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); REALLOC(fz, MD_FLOAT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
#endif #endif
atom->type = (int *) reallocate(atom->type, ALIGNMENT, atom->Nmax * sizeof(int), nold * sizeof(int)); REALLOC(type, int, atom->Nmax * sizeof(int), nold * sizeof(int));
// DEM // DEM
atom->radius = (MD_FLOAT *) reallocate(atom->radius, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT)); atom->radius = (MD_FLOAT *) reallocate(atom->radius, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT), nold * sizeof(MD_FLOAT));
atom->av = (MD_FLOAT*) reallocate(atom->av, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3); atom->av = (MD_FLOAT*) reallocate(atom->av, ALIGNMENT, atom->Nmax * sizeof(MD_FLOAT) * 3, nold * sizeof(MD_FLOAT) * 3);

View File

@ -31,30 +31,22 @@ extern "C" {
#include <cuda_atom.h> #include <cuda_atom.h>
#include <neighbor.h> #include <neighbor.h>
void initCuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) { void initCuda(Atom *atom, Neighbor *neighbor) {
c_atom->Natoms = atom->Natoms; DeviceAtom *d_atom = &(atom->d_atom);
c_atom->Nlocal = atom->Nlocal; DeviceNeighbor *d_neighbor = &(neighbor->d_neighbor);
c_atom->Nghost = atom->Nghost;
c_atom->Nmax = atom->Nmax;
c_atom->ntypes = atom->ntypes;
c_atom->border_map = NULL;
c_atom->x = (MD_FLOAT *) allocateGPU(sizeof(MD_FLOAT) * atom->Nmax * 3); d_atom->epsilon = (MD_FLOAT *) allocateGPU(sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
c_atom->vx = (MD_FLOAT *) allocateGPU(sizeof(MD_FLOAT) * atom->Nmax * 3); d_atom->sigma6 = (MD_FLOAT *) allocateGPU(sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
c_atom->fx = (MD_FLOAT *) allocateGPU(sizeof(MD_FLOAT) * atom->Nmax * 3); d_atom->cutforcesq = (MD_FLOAT *) allocateGPU(sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
c_atom->epsilon = (MD_FLOAT *) allocateGPU(sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); d_neighbor->neighbors = (int *) allocateGPU(sizeof(int) * atom->Nmax * neighbor->maxneighs);
c_atom->sigma6 = (MD_FLOAT *) allocateGPU(sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); d_neighbor->numneigh = (int *) allocateGPU(sizeof(int) * atom->Nmax);
c_atom->cutforcesq = (MD_FLOAT *) allocateGPU(sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
c_atom->type = (int *) allocateGPU(sizeof(int) * atom->Nmax * 3);
c_neighbor->neighbors = (int *) allocateGPU(sizeof(int) * atom->Nmax * neighbor->maxneighs);
c_neighbor->numneigh = (int *) allocateGPU(sizeof(int) * atom->Nmax);
memcpyToGPU(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3); memcpyToGPU(d_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3);
memcpyToGPU(c_atom->vx, atom->vx, sizeof(MD_FLOAT) * atom->Nmax * 3); memcpyToGPU(d_atom->vx, atom->vx, sizeof(MD_FLOAT) * atom->Nmax * 3);
memcpyToGPU(c_atom->sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); memcpyToGPU(d_atom->sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
memcpyToGPU(c_atom->epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); memcpyToGPU(d_atom->epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
memcpyToGPU(c_atom->cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes); memcpyToGPU(d_atom->cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
memcpyToGPU(c_atom->type, atom->type, sizeof(int) * atom->Nmax); memcpyToGPU(d_atom->type, atom->type, sizeof(int) * atom->Nmax);
} }
void cuda_assert(const char *label, cudaError_t err) { void cuda_assert(const char *label, cudaError_t err) {

View File

@ -45,14 +45,13 @@ extern "C" {
} }
// cuda kernel // cuda kernel
__global__ void calc_force(Atom a, MD_FLOAT cutforcesq, MD_FLOAT sigma6, MD_FLOAT epsilon, int Nlocal, int neigh_maxneighs, int *neigh_neighbors, int *neigh_numneigh) { __global__ void calc_force(DeviceAtom a, MD_FLOAT cutforcesq, MD_FLOAT sigma6, MD_FLOAT epsilon, int Nlocal, int neigh_maxneighs, int *neigh_neighbors, int *neigh_numneigh) {
const int i = blockIdx.x * blockDim.x + threadIdx.x; const int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= Nlocal) { if(i >= Nlocal) {
return; return;
} }
Atom *atom = &a; DeviceAtom *atom = &a;
const int numneighs = neigh_numneigh[i]; const int numneighs = neigh_numneigh[i];
MD_FLOAT xtmp = atom_x(i); MD_FLOAT xtmp = atom_x(i);
@ -64,7 +63,7 @@ __global__ void calc_force(Atom a, MD_FLOAT cutforcesq, MD_FLOAT sigma6, MD_FLOA
MD_FLOAT fiz = 0; MD_FLOAT fiz = 0;
for(int k = 0; k < numneighs; k++) { for(int k = 0; k < numneighs; k++) {
int j = neigh_neighbors[atom->Nlocal * k + i]; int j = neigh_neighbors[Nlocal * k + i];
MD_FLOAT delx = xtmp - atom_x(j); MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j); MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j); MD_FLOAT delz = ztmp - atom_z(j);
@ -93,13 +92,13 @@ __global__ void calc_force(Atom a, MD_FLOAT cutforcesq, MD_FLOAT sigma6, MD_FLOA
atom_fz(i) = fiz; atom_fz(i) = fiz;
} }
__global__ void kernel_initial_integrate(MD_FLOAT dtforce, MD_FLOAT dt, int Nlocal, Atom a) { __global__ void kernel_initial_integrate(MD_FLOAT dtforce, MD_FLOAT dt, int Nlocal, DeviceAtom a) {
const int i = blockIdx.x * blockDim.x + threadIdx.x; const int i = blockIdx.x * blockDim.x + threadIdx.x;
if( i >= Nlocal ) { if( i >= Nlocal ) {
return; return;
} }
Atom *atom = &a; DeviceAtom *atom = &a;
atom_vx(i) += dtforce * atom_fx(i); atom_vx(i) += dtforce * atom_fx(i);
atom_vy(i) += dtforce * atom_fy(i); atom_vy(i) += dtforce * atom_fy(i);
@ -109,13 +108,13 @@ __global__ void kernel_initial_integrate(MD_FLOAT dtforce, MD_FLOAT dt, int Nloc
atom_z(i) = atom_z(i) + dt * atom_vz(i); atom_z(i) = atom_z(i) + dt * atom_vz(i);
} }
__global__ void kernel_final_integrate(MD_FLOAT dtforce, int Nlocal, Atom a) { __global__ void kernel_final_integrate(MD_FLOAT dtforce, int Nlocal, DeviceAtom a) {
const int i = blockIdx.x * blockDim.x + threadIdx.x; const int i = blockIdx.x * blockDim.x + threadIdx.x;
if( i >= Nlocal ) { if( i >= Nlocal ) {
return; return;
} }
Atom *atom = &a; DeviceAtom *atom = &a;
atom_vx(i) += dtforce * atom_fx(i); atom_vx(i) += dtforce * atom_fx(i);
atom_vy(i) += dtforce * atom_fy(i); atom_vy(i) += dtforce * atom_fy(i);
@ -124,35 +123,35 @@ __global__ void kernel_final_integrate(MD_FLOAT dtforce, int Nlocal, Atom a) {
extern "C" { extern "C" {
void finalIntegrate_cuda(bool reneigh, Parameter *param, Atom *atom, Atom *c_atom) { void finalIntegrate_cuda(bool reneigh, Parameter *param, Atom *atom) {
const int Nlocal = atom->Nlocal; const int Nlocal = atom->Nlocal;
const int num_threads_per_block = get_num_threads(); const int num_threads_per_block = get_num_threads();
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_final_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, Nlocal, *c_atom); kernel_final_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, Nlocal, atom->d_atom);
cuda_assert("kernel_final_integrate", cudaPeekAtLastError()); cuda_assert("kernel_final_integrate", cudaPeekAtLastError());
cuda_assert("kernel_final_integrate", cudaDeviceSynchronize()); cuda_assert("kernel_final_integrate", cudaDeviceSynchronize());
if(reneigh) { if(reneigh) {
memcpyFromGPU(atom->vx, c_atom->vx, sizeof(MD_FLOAT) * atom->Nlocal * 3); memcpyFromGPU(atom->vx, atom->d_atom.vx, sizeof(MD_FLOAT) * atom->Nlocal * 3);
} }
} }
void initialIntegrate_cuda(bool reneigh, Parameter *param, Atom *atom, Atom *c_atom) { void initialIntegrate_cuda(bool reneigh, Parameter *param, Atom *atom) {
const int Nlocal = atom->Nlocal; const int Nlocal = atom->Nlocal;
const int num_threads_per_block = get_num_threads(); const int num_threads_per_block = get_num_threads();
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
kernel_initial_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, param->dt, Nlocal, *c_atom); kernel_initial_integrate <<< num_blocks, num_threads_per_block >>> (param->dtforce, param->dt, Nlocal, atom->d_atom);
cuda_assert("kernel_initial_integrate", cudaPeekAtLastError()); cuda_assert("kernel_initial_integrate", cudaPeekAtLastError());
cuda_assert("kernel_initial_integrate", cudaDeviceSynchronize()); cuda_assert("kernel_initial_integrate", cudaDeviceSynchronize());
if(reneigh) { if(reneigh) {
memcpyFromGPU(atom->vx, c_atom->vx, sizeof(MD_FLOAT) * atom->Nlocal * 3); memcpyFromGPU(atom->vx, atom->d_atom.vx, sizeof(MD_FLOAT) * atom->Nlocal * 3);
} }
} }
double computeForceLJFullNeigh_cuda(Parameter *param, Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) { double computeForceLJFullNeigh_cuda(Parameter *param, Atom *atom, Neighbor *neighbor) {
const int num_threads_per_block = get_num_threads(); const int num_threads_per_block = get_num_threads();
int Nlocal = atom->Nlocal; int Nlocal = atom->Nlocal;
#ifndef EXPLICIT_TYPES #ifndef EXPLICIT_TYPES
@ -175,14 +174,14 @@ double computeForceLJFullNeigh_cuda(Parameter *param, Atom *atom, Neighbor *neig
// HINT: Run with cuda-memcheck ./MDBench-NVCC in case of error // HINT: Run with cuda-memcheck ./MDBench-NVCC in case of error
// checkCUDAError( "c_atom->fx memset", cudaMemset(c_atom->fx, 0, sizeof(MD_FLOAT) * Nlocal * 3) ); // memsetGPU(atom->d_atom.fx, 0, sizeof(MD_FLOAT) * Nlocal * 3);
cudaProfilerStart(); cudaProfilerStart();
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
double S = getTimeStamp(); double S = getTimeStamp();
LIKWID_MARKER_START("force"); LIKWID_MARKER_START("force");
calc_force <<< num_blocks, num_threads_per_block >>> (*c_atom, cutforcesq, sigma6, epsilon, Nlocal, neighbor->maxneighs, c_neighbor->neighbors, c_neighbor->numneigh); calc_force <<< num_blocks, num_threads_per_block >>> (atom->d_atom, cutforcesq, sigma6, epsilon, Nlocal, neighbor->maxneighs, neighbor->d_neighbor.neighbors, neighbor->d_neighbor.numneigh);
cuda_assert("calc_force", cudaPeekAtLastError()); cuda_assert("calc_force", cudaPeekAtLastError());
cuda_assert("calc_force", cudaDeviceSynchronize()); cuda_assert("calc_force", cudaDeviceSynchronize());
cudaProfilerStop(); cudaProfilerStop();

View File

@ -114,10 +114,9 @@ __global__ void sort_bin_contents_kernel(int* bincount, int* bins, int mbins, in
} while (!sorted); } while (!sorted);
} }
__global__ void binatoms_kernel(Atom a, int* bincount, int* bins, int atoms_per_bin, Neighbor_params np, int *resize_needed) { __global__ void binatoms_kernel(DeviceAtom a, int nall, int* bincount, int* bins, int atoms_per_bin, Neighbor_params np, int *resize_needed) {
Atom* atom = &a; DeviceAtom* atom = &a;
const int i = blockIdx.x * blockDim.x + threadIdx.x; const int i = blockIdx.x * blockDim.x + threadIdx.x;
int nall = atom->Nlocal + atom->Nghost;
if(i >= nall) { if(i >= nall) {
return; return;
} }
@ -135,16 +134,17 @@ __global__ void binatoms_kernel(Atom a, int* bincount, int* bins, int atoms_per_
} }
} }
__global__ void compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np, int nstencil, int* stencil, __global__ void compute_neighborhood(
DeviceAtom a, DeviceNeighbor neigh, Neighbor_params np, int nlocal, int maxneighs, int nstencil, int* stencil,
int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs, MD_FLOAT cutneighsq) { int* bins, int atoms_per_bin, int *bincount, int *new_maxneighs, MD_FLOAT cutneighsq) {
const int i = blockIdx.x * blockDim.x + threadIdx.x; const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nlocal = a.Nlocal; if(i >= nlocal) {
if( i >= Nlocal ) {
return; return;
} }
Atom *atom = &a; DeviceAtom *atom = &a;
Neighbor *neighbor = &neigh; DeviceNeighbor *neighbor = &neigh;
int* neighptr = &(neighbor->neighbors[i]); int* neighptr = &(neighbor->neighbors[i]);
int n = 0; int n = 0;
@ -179,7 +179,7 @@ __global__ void compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np,
#endif #endif
if( rsq <= cutoff ) { if( rsq <= cutoff ) {
int idx = atom->Nlocal * n; int idx = nlocal * n;
neighptr[idx] = j; neighptr[idx] = j;
n += 1; n += 1;
} }
@ -187,13 +187,13 @@ __global__ void compute_neighborhood(Atom a, Neighbor neigh, Neighbor_params np,
} }
neighbor->numneigh[i] = n; neighbor->numneigh[i] = n;
if(n > neighbor->maxneighs) { if(n > maxneighs) {
atomicMax(new_maxneighs, n); atomicMax(new_maxneighs, n);
} }
} }
void binatoms_cuda(Atom *c_atom, Binning *c_binning, int *c_resize_needed, Neighbor_params *np, const int threads_per_block) { void binatoms_cuda(Atom *atom, Binning *c_binning, int *c_resize_needed, Neighbor_params *np, const int threads_per_block) {
int nall = c_atom->Nlocal + c_atom->Nghost; int nall = atom->Nlocal + atom->Nghost;
int resize = 1; int resize = 1;
const int num_blocks = ceil((float) nall / (float) threads_per_block); const int num_blocks = ceil((float) nall / (float) threads_per_block);
@ -202,7 +202,7 @@ void binatoms_cuda(Atom *c_atom, Binning *c_binning, int *c_resize_needed, Neigh
memsetGPU(c_binning->bincount, 0, c_binning->mbins * sizeof(int)); memsetGPU(c_binning->bincount, 0, c_binning->mbins * sizeof(int));
memsetGPU(c_resize_needed, 0, sizeof(int)); memsetGPU(c_resize_needed, 0, sizeof(int));
binatoms_kernel<<<num_blocks, threads_per_block>>>(*c_atom, c_binning->bincount, c_binning->bins, c_binning->atoms_per_bin, *np, c_resize_needed); binatoms_kernel<<<num_blocks, threads_per_block>>>(atom->d_atom, atom->Nlocal + atom->Nghost, c_binning->bincount, c_binning->bins, c_binning->atoms_per_bin, *np, c_resize_needed);
cuda_assert("binatoms", cudaPeekAtLastError()); cuda_assert("binatoms", cudaPeekAtLastError());
cuda_assert("binatoms", cudaDeviceSynchronize()); cuda_assert("binatoms", cudaDeviceSynchronize());
@ -220,10 +220,10 @@ void binatoms_cuda(Atom *c_atom, Binning *c_binning, int *c_resize_needed, Neigh
cuda_assert("sort_bin", cudaDeviceSynchronize()); cuda_assert("sort_bin", cudaDeviceSynchronize());
} }
void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) { void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor) {
DeviceNeighbor *d_neighbor = &(neighbor->d_neighbor);
const int num_threads_per_block = get_num_threads(); const int num_threads_per_block = get_num_threads();
int nall = atom->Nlocal + atom->Nghost; int nall = atom->Nlocal + atom->Nghost;
c_neighbor->maxneighs = neighbor->maxneighs;
cudaProfilerStart(); cudaProfilerStart();
@ -263,18 +263,17 @@ void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *
} }
/* bin local & ghost atoms */ /* bin local & ghost atoms */
binatoms_cuda(c_atom, &c_binning, c_resize_needed, &np, num_threads_per_block); binatoms_cuda(atom, &c_binning, c_resize_needed, &np, num_threads_per_block);
if(c_new_maxneighs == NULL) { if(c_new_maxneighs == NULL) {
c_new_maxneighs = (int *) allocateGPU(sizeof(int)); c_new_maxneighs = (int *) allocateGPU(sizeof(int));
} }
int resize = 1; int resize = 1;
/* extend c_neighbor arrays if necessary */
if(nall > nmax) { if(nall > nmax) {
nmax = nall; nmax = nall;
c_neighbor->neighbors = (int *) reallocateGPU(c_neighbor->neighbors, nmax * c_neighbor->maxneighs * sizeof(int)); d_neighbor->neighbors = (int *) reallocateGPU(d_neighbor->neighbors, nmax * neighbor->maxneighs * sizeof(int));
c_neighbor->numneigh = (int *) reallocateGPU(c_neighbor->numneigh, nmax * sizeof(int)); d_neighbor->numneigh = (int *) reallocateGPU(d_neighbor->numneigh, nmax * sizeof(int));
} }
/* loop over each atom, storing neighbors */ /* loop over each atom, storing neighbors */
@ -282,8 +281,8 @@ void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *
resize = 0; resize = 0;
memsetGPU(c_new_maxneighs, 0, sizeof(int)); memsetGPU(c_new_maxneighs, 0, sizeof(int));
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
compute_neighborhood<<<num_blocks, num_threads_per_block>>>(*c_atom, *c_neighbor, compute_neighborhood<<<num_blocks, num_threads_per_block>>>(atom->d_atom, *d_neighbor,
np, nstencil, c_stencil, np, atom->Nlocal, neighbor->maxneighs, nstencil, c_stencil,
c_binning.bins, c_binning.atoms_per_bin, c_binning.bincount, c_binning.bins, c_binning.atoms_per_bin, c_binning.bincount,
c_new_maxneighs, c_new_maxneighs,
cutneighsq); cutneighsq);
@ -293,19 +292,18 @@ void buildNeighbor_cuda(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *
int new_maxneighs; int new_maxneighs;
memcpyFromGPU(&new_maxneighs, c_new_maxneighs, sizeof(int)); memcpyFromGPU(&new_maxneighs, c_new_maxneighs, sizeof(int));
if (new_maxneighs > c_neighbor->maxneighs){ if(new_maxneighs > neighbor->maxneighs){
resize = 1; resize = 1;
} }
if(resize) { if(resize) {
printf("RESIZE %d\n", c_neighbor->maxneighs); printf("RESIZE %d\n", neighbor->maxneighs);
c_neighbor->maxneighs = new_maxneighs * 1.2; neighbor->maxneighs = new_maxneighs * 1.2;
printf("NEW SIZE %d\n", c_neighbor->maxneighs); printf("NEW SIZE %d\n", neighbor->maxneighs);
c_neighbor->neighbors = (int *) reallocateGPU(c_neighbor->neighbors, c_atom->Nmax * c_neighbor->maxneighs * sizeof(int)); neighbor->neighbors = (int *) reallocateGPU(neighbor->neighbors, atom->Nmax * neighbor->maxneighs * sizeof(int));
} }
} }
neighbor->maxneighs = c_neighbor->maxneighs;
cudaProfilerStop(); cudaProfilerStop();
} }

View File

@ -36,13 +36,13 @@ extern "C" {
extern int NmaxGhost; extern int NmaxGhost;
extern int *PBCx, *PBCy, *PBCz; extern int *PBCx, *PBCy, *PBCz;
static int c_NmaxGhost; static int c_NmaxGhost = 0;
static int *c_PBCx, *c_PBCy, *c_PBCz; static int *c_PBCx = NULL, *c_PBCy = NULL, *c_PBCz = NULL;
__global__ void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd) { __global__ void computeAtomsPbcUpdate(DeviceAtom a, int nlocal, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd) {
const int i = blockIdx.x * blockDim.x + threadIdx.x; const int i = blockIdx.x * blockDim.x + threadIdx.x;
Atom* atom = &a; DeviceAtom *atom = &a;
if(i >= atom->Nlocal) { if(i >= nlocal) {
return; return;
} }
@ -65,17 +65,14 @@ __global__ void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_F
} }
} }
__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){ __global__ void computePbcUpdate(DeviceAtom a, int nlocal, int nghost, int* PBCx, int* PBCy, int* PBCz, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x; const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nghost = a.Nghost; if(i >= nghost) {
if(i >= Nghost) {
return; return;
} }
Atom* atom = &a; DeviceAtom* atom = &a;
int *border_map = atom->border_map; int *border_map = atom->border_map;
int nlocal = atom->Nlocal;
atom_x(nlocal + i) = atom_x(border_map[i]) + PBCx[i] * xprd; atom_x(nlocal + i) = atom_x(border_map[i]) + PBCx[i] * xprd;
atom_y(nlocal + i) = atom_y(border_map[i]) + PBCy[i] * yprd; atom_y(nlocal + i) = atom_y(border_map[i]) + PBCy[i] * yprd;
atom_z(nlocal + i) = atom_z(border_map[i]) + PBCz[i] * zprd; atom_z(nlocal + i) = atom_z(border_map[i]) + PBCz[i] * zprd;
@ -83,36 +80,27 @@ __global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz, MD_FLO
/* update coordinates of ghost atoms */ /* update coordinates of ghost atoms */
/* uses mapping created in setupPbc */ /* uses mapping created in setupPbc */
void updatePbc_cuda(Atom *atom, Atom *c_atom, Parameter *param, bool doReneighbor) { void updatePbc_cuda(Atom *atom, Parameter *param, bool reneigh) {
const int num_threads_per_block = get_num_threads(); const int num_threads_per_block = get_num_threads();
if (doReneighbor) { if(reneigh) {
c_atom->Natoms = atom->Natoms; memcpyToGPU(atom->d_atom.x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3);
c_atom->Nlocal = atom->Nlocal; memcpyToGPU(atom->d_atom.type, atom->type, sizeof(int) * atom->Nmax);
c_atom->Nghost = atom->Nghost;
c_atom->ntypes = atom->ntypes;
if (atom->Nmax > c_atom->Nmax){ // the number of ghost atoms has increased -> more space is needed
c_atom->Nmax = atom->Nmax;
c_atom->x = (MD_FLOAT *) reallocateGPU(c_atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3);
c_atom->type = (int *) reallocateGPU(c_atom->type, sizeof(int) * atom->Nmax);
}
memcpyToGPU(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3);
memcpyToGPU(c_atom->type, atom->type, sizeof(int) * atom->Nmax);
if(c_NmaxGhost < NmaxGhost) { if(c_NmaxGhost < NmaxGhost) {
c_NmaxGhost = NmaxGhost; c_NmaxGhost = NmaxGhost;
c_PBCx = (int *) reallocateGPU(c_PBCx, NmaxGhost * sizeof(int)); c_PBCx = (int *) reallocateGPU(c_PBCx, NmaxGhost * sizeof(int));
c_PBCy = (int *) reallocateGPU(c_PBCy, NmaxGhost * sizeof(int)); c_PBCy = (int *) reallocateGPU(c_PBCy, NmaxGhost * sizeof(int));
c_PBCz = (int *) reallocateGPU(c_PBCz, NmaxGhost * sizeof(int)); c_PBCz = (int *) reallocateGPU(c_PBCz, NmaxGhost * sizeof(int));
c_atom->border_map = (int *) reallocateGPU(c_atom->border_map, NmaxGhost * sizeof(int)); atom->d_atom.border_map = (int *) reallocateGPU(atom->d_atom.border_map, NmaxGhost * sizeof(int));
} }
memcpyToGPU(c_PBCx, PBCx, NmaxGhost * sizeof(int)); memcpyToGPU(c_PBCx, PBCx, NmaxGhost * sizeof(int));
memcpyToGPU(c_PBCy, PBCy, NmaxGhost * sizeof(int)); memcpyToGPU(c_PBCy, PBCy, NmaxGhost * sizeof(int));
memcpyToGPU(c_PBCz, PBCz, NmaxGhost * sizeof(int)); memcpyToGPU(c_PBCz, PBCz, NmaxGhost * sizeof(int));
memcpyToGPU(c_atom->border_map, atom->border_map, NmaxGhost * sizeof(int)); memcpyToGPU(atom->d_atom.border_map, atom->border_map, NmaxGhost * sizeof(int));
cuda_assert("updatePbc.reneigh", cudaPeekAtLastError());
cuda_assert("updatePbc.reneigh", cudaDeviceSynchronize());
} }
MD_FLOAT xprd = param->xprd; MD_FLOAT xprd = param->xprd;
@ -120,20 +108,20 @@ void updatePbc_cuda(Atom *atom, Atom *c_atom, Parameter *param, bool doReneighbo
MD_FLOAT zprd = param->zprd; MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nghost / (float)num_threads_per_block); const int num_blocks = ceil((float)atom->Nghost / (float)num_threads_per_block);
computePbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, c_PBCx, c_PBCy, c_PBCz, xprd, yprd, zprd); computePbcUpdate<<<num_blocks, num_threads_per_block>>>(atom->d_atom, atom->Nlocal, atom->Nghost, c_PBCx, c_PBCy, c_PBCz, xprd, yprd, zprd);
cuda_assert("computePbcUpdate", cudaPeekAtLastError()); cuda_assert("updatePbc", cudaPeekAtLastError());
cuda_assert("computePbcUpdate", cudaDeviceSynchronize()); cuda_assert("updatePbc", cudaDeviceSynchronize());
} }
void updateAtomsPbc_cuda(Atom* atom, Atom *c_atom, Parameter *param) { void updateAtomsPbc_cuda(Atom* atom, Parameter *param) {
const int num_threads_per_block = get_num_threads(); const int num_threads_per_block = get_num_threads();
MD_FLOAT xprd = param->xprd; MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd; MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd; MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
computeAtomsPbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, xprd, yprd, zprd); computeAtomsPbcUpdate<<<num_blocks, num_threads_per_block>>>(atom->d_atom, atom->Nlocal, xprd, yprd, zprd);
cuda_assert("computeAtomsPbcUpdate", cudaPeekAtLastError()); cuda_assert("computeAtomsPbcUpdate", cudaPeekAtLastError());
cuda_assert("computeAtomsPbcUpdate", cudaDeviceSynchronize()); cuda_assert("computeAtomsPbcUpdate", cudaDeviceSynchronize());
memcpyFromGPU(atom->x, c_atom->x, sizeof(MD_FLOAT) * atom->Nlocal * 3); memcpyFromGPU(atom->x, atom->d_atom.x, sizeof(MD_FLOAT) * atom->Nlocal * 3);
} }

View File

@ -48,6 +48,18 @@
# define updateAtomsPbc updateAtomsPbc_cpu # define updateAtomsPbc updateAtomsPbc_cpu
#endif #endif
typedef struct {
MD_FLOAT *x, *y, *z;
MD_FLOAT *vx, *vy, *vz;
MD_FLOAT *fx, *fy, *fz;
int *border_map;
int *type;
MD_FLOAT *epsilon;
MD_FLOAT *sigma6;
MD_FLOAT *cutforcesq;
MD_FLOAT *cutneighsq;
} DeviceAtom;
typedef struct { typedef struct {
int Natoms, Nlocal, Nghost, Nmax; int Natoms, Nlocal, Nghost, Nmax;
MD_FLOAT *x, *y, *z; MD_FLOAT *x, *y, *z;
@ -60,10 +72,14 @@ typedef struct {
MD_FLOAT *sigma6; MD_FLOAT *sigma6;
MD_FLOAT *cutforcesq; MD_FLOAT *cutforcesq;
MD_FLOAT *cutneighsq; MD_FLOAT *cutneighsq;
// DEM // DEM
MD_FLOAT *radius; MD_FLOAT *radius;
MD_FLOAT *av; MD_FLOAT *av;
MD_FLOAT *r; MD_FLOAT *r;
// Device data
DeviceAtom d_atom;
} Atom; } Atom;
extern void initAtom(Atom*); extern void initAtom(Atom*);

View File

@ -5,7 +5,7 @@
#ifndef __CUDA_ATOM_H_ #ifndef __CUDA_ATOM_H_
#define __CUDA_ATOM_H_ #define __CUDA_ATOM_H_
extern void initCuda(Atom*, Neighbor*, Atom*, Neighbor*); extern void initCuda(Atom*, Neighbor*);
extern void cuda_assert(const char *msg, cudaError_t err); extern void cuda_assert(const char *msg, cudaError_t err);
extern void *allocateGPU(size_t bytesize); extern void *allocateGPU(size_t bytesize);
extern void *reallocateGPU(void *ptr, size_t new_bytesize); extern void *reallocateGPU(void *ptr, size_t new_bytesize);

View File

@ -23,7 +23,7 @@
#include <parameter.h> #include <parameter.h>
#include <atom.h> #include <atom.h>
void initialIntegrate_cpu(bool reneigh, Parameter *param, Atom *atom, Atom *c_atom) { void initialIntegrate_cpu(bool reneigh, Parameter *param, Atom *atom) {
for(int i = 0; i < atom->Nlocal; i++) { for(int i = 0; i < atom->Nlocal; i++) {
atom_vx(i) += param->dtforce * atom_fx(i); atom_vx(i) += param->dtforce * atom_fx(i);
atom_vy(i) += param->dtforce * atom_fy(i); atom_vy(i) += param->dtforce * atom_fy(i);
@ -34,7 +34,7 @@ void initialIntegrate_cpu(bool reneigh, Parameter *param, Atom *atom, Atom *c_at
} }
} }
void finalIntegrate_cpu(bool reneigh, Parameter *param, Atom *atom, Atom *c_atom) { void finalIntegrate_cpu(bool reneigh, Parameter *param, Atom *atom) {
for(int i = 0; i < atom->Nlocal; i++) { for(int i = 0; i < atom->Nlocal; i++) {
atom_vx(i) += param->dtforce * atom_fx(i); atom_vx(i) += param->dtforce * atom_fx(i);
atom_vy(i) += param->dtforce * atom_fy(i); atom_vy(i) += param->dtforce * atom_fy(i);
@ -43,6 +43,6 @@ void finalIntegrate_cpu(bool reneigh, Parameter *param, Atom *atom, Atom *c_atom
} }
#ifdef CUDA_TARGET #ifdef CUDA_TARGET
void initialIntegrate_cuda(bool, Parameter*, Atom*, Atom*); void initialIntegrate_cuda(bool, Parameter*, Atom*);
void finalIntegrate_cuda(bool, Parameter*, Atom*, Atom*); void finalIntegrate_cuda(bool, Parameter*, Atom*);
#endif #endif

View File

@ -25,6 +25,12 @@
#ifndef __NEIGHBOR_H_ #ifndef __NEIGHBOR_H_
#define __NEIGHBOR_H_ #define __NEIGHBOR_H_
typedef struct {
int *neighbors;
int *numneigh;
} DeviceNeighbor;
typedef struct { typedef struct {
int every; int every;
int ncalls; int ncalls;
@ -32,6 +38,9 @@ typedef struct {
int half_neigh; int half_neigh;
int *neighbors; int *neighbors;
int *numneigh; int *numneigh;
// Device data
DeviceNeighbor d_neighbor;
} Neighbor; } Neighbor;
typedef struct { typedef struct {
@ -52,11 +61,11 @@ typedef struct {
extern void initNeighbor(Neighbor*, Parameter*); extern void initNeighbor(Neighbor*, Parameter*);
extern void setupNeighbor(Parameter*); extern void setupNeighbor(Parameter*);
extern void binatoms(Atom*); extern void binatoms(Atom*);
extern void buildNeighbor_cpu(Atom*, Neighbor*, Atom*, Neighbor*); extern void buildNeighbor_cpu(Atom*, Neighbor*);
extern void sortAtom(Atom*); extern void sortAtom(Atom*);
#ifdef CUDA_TARGET #ifdef CUDA_TARGET
extern void buildNeighbor_cuda(Atom*, Neighbor*, Atom*, Neighbor*); extern void buildNeighbor_cuda(Atom*, Neighbor*);
#endif #endif
#endif #endif

View File

@ -28,13 +28,13 @@
#ifndef __PBC_H_ #ifndef __PBC_H_
#define __PBC_H_ #define __PBC_H_
extern void initPbc(); extern void initPbc();
extern void updatePbc_cpu(Atom*, Atom*, Parameter*, bool); extern void updatePbc_cpu(Atom*, Parameter*, bool);
extern void updateAtomsPbc_cpu(Atom*, Atom*, Parameter*); extern void updateAtomsPbc_cpu(Atom*, Parameter*);
extern void setupPbc(Atom*, Parameter*); extern void setupPbc(Atom*, Parameter*);
#ifdef CUDA_TARGET #ifdef CUDA_TARGET
extern void updatePbc_cuda(Atom*, Atom*, Parameter*, bool); extern void updatePbc_cuda(Atom*, Parameter*, bool);
extern void updateAtomsPbc_cuda(Atom*, Atom*, Parameter*); extern void updateAtomsPbc_cuda(Atom*, Parameter*);
#endif #endif
#endif #endif

View File

@ -54,10 +54,10 @@ extern double computeForceDemFullNeigh(Parameter*, Atom*, Neighbor*, Stats*);
#ifdef CUDA_TARGET #ifdef CUDA_TARGET
#include <cuda_atom.h> #include <cuda_atom.h>
extern double computeForceLJFullNeigh_cuda(Parameter*, Atom*, Neighbor*, Atom*, Neighbor*); extern double computeForceLJFullNeigh_cuda(Parameter*, Atom*, Neighbor*);
#endif #endif
double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor, Stats *stats) { double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *stats) {
if(param->force_field == FF_EAM) { initEam(eam, param); } if(param->force_field == FF_EAM) { initEam(eam, param); }
double S, E; double S, E;
param->lattice = pow((4.0 / param->rho), (1.0 / 3.0)); param->lattice = pow((4.0 / param->rho), (1.0 / 3.0));
@ -81,23 +81,23 @@ double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Atom *c
if(param->input_file == NULL) { adjustThermo(param, atom); } if(param->input_file == NULL) { adjustThermo(param, atom); }
setupPbc(atom, param); setupPbc(atom, param);
#ifdef CUDA_TARGET #ifdef CUDA_TARGET
initCuda(atom, neighbor, c_atom, c_neighbor); initCuda(atom, neighbor);
#endif #endif
updatePbc(atom, c_atom, param, true); updatePbc(atom, param, true);
buildNeighbor(atom, neighbor, c_atom, c_neighbor); buildNeighbor(atom, neighbor);
E = getTimeStamp(); E = getTimeStamp();
return E-S; return E-S;
} }
double reneighbour(Parameter *param, Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) { double reneighbour(Parameter *param, Atom *atom, Neighbor *neighbor) {
double S, E; double S, E;
S = getTimeStamp(); S = getTimeStamp();
LIKWID_MARKER_START("reneighbour"); LIKWID_MARKER_START("reneighbour");
updateAtomsPbc(atom, c_atom, param); updateAtomsPbc(atom, param);
setupPbc(atom, param); setupPbc(atom, param);
updatePbc(atom, c_atom, param, true); updatePbc(atom, param, true);
//sortAtom(atom); //sortAtom(atom);
buildNeighbor(atom, neighbor, c_atom, c_neighbor); buildNeighbor(atom, neighbor);
LIKWID_MARKER_STOP("reneighbour"); LIKWID_MARKER_STOP("reneighbour");
E = getTimeStamp(); E = getTimeStamp();
return E-S; return E-S;
@ -111,7 +111,7 @@ void printAtomState(Atom *atom) {
// } // }
} }
double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor, Stats *stats) { double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
if(param->force_field == FF_EAM) { if(param->force_field == FF_EAM) {
return computeForceEam(eam, param, atom, neighbor, stats); return computeForceEam(eam, param, atom, neighbor, stats);
} else if(param->force_field == FF_DEM) { } else if(param->force_field == FF_DEM) {
@ -128,7 +128,7 @@ double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor,
} }
#ifdef CUDA_TARGET #ifdef CUDA_TARGET
return computeForceLJFullNeigh(param, atom, neighbor, c_atom, c_neighbor); return computeForceLJFullNeigh(param, atom, neighbor);
#else #else
return computeForceLJFullNeigh(param, atom, neighbor, stats); return computeForceLJFullNeigh(param, atom, neighbor, stats);
#endif #endif
@ -137,8 +137,8 @@ double computeForce(Eam *eam, Parameter *param, Atom *atom, Neighbor *neighbor,
int main(int argc, char** argv) { int main(int argc, char** argv) {
double timer[NUMTIMER]; double timer[NUMTIMER];
Eam eam; Eam eam;
Atom atom, c_atom; Atom atom;
Neighbor neighbor, c_neighbor; Neighbor neighbor;
Stats stats; Stats stats;
Parameter param; Parameter param;
@ -226,7 +226,7 @@ int main(int argc, char** argv) {
} }
param.cutneigh = param.cutforce + param.skin; param.cutneigh = param.cutforce + param.skin;
setup(&param, &eam, &atom, &neighbor, &c_atom, &c_neighbor, &stats); setup(&param, &eam, &atom, &neighbor, &stats);
printParameter(&param); printParameter(&param);
printf("step\ttemp\t\tpressure\n"); printf("step\ttemp\t\tpressure\n");
@ -235,7 +235,7 @@ int main(int argc, char** argv) {
traceAddresses(&param, &atom, &neighbor, n + 1); traceAddresses(&param, &atom, &neighbor, n + 1);
#endif #endif
timer[FORCE] = computeForce(&eam, &param, &atom, &neighbor, &c_atom, &c_neighbor, &stats); timer[FORCE] = computeForce(&eam, &param, &atom, &neighbor, &stats);
timer[NEIGH] = 0.0; timer[NEIGH] = 0.0;
timer[TOTAL] = getTimeStamp(); timer[TOTAL] = getTimeStamp();
@ -245,23 +245,23 @@ int main(int argc, char** argv) {
for(int n = 0; n < param.ntimes; n++) { for(int n = 0; n < param.ntimes; n++) {
bool reneigh = (n + 1) % param.reneigh_every == 0; bool reneigh = (n + 1) % param.reneigh_every == 0;
initialIntegrate(reneigh, &param, &atom, &c_atom); initialIntegrate(reneigh, &param, &atom);
if((n + 1) % param.reneigh_every) { if((n + 1) % param.reneigh_every) {
updatePbc(&atom, &c_atom, &param, false); updatePbc(&atom, &param, false);
} else { } else {
timer[NEIGH] += reneighbour(&param, &atom, &neighbor, &c_atom, &c_neighbor); timer[NEIGH] += reneighbour(&param, &atom, &neighbor);
} }
#if defined(MEM_TRACER) || defined(INDEX_TRACER) #if defined(MEM_TRACER) || defined(INDEX_TRACER)
traceAddresses(&param, &atom, &neighbor, n + 1); traceAddresses(&param, &atom, &neighbor, n + 1);
#endif #endif
timer[FORCE] += computeForce(&eam, &param, &atom, &neighbor, &c_atom, &c_neighbor, &stats); timer[FORCE] += computeForce(&eam, &param, &atom, &neighbor, &stats);
finalIntegrate(reneigh, &param, &atom, &c_atom); finalIntegrate(reneigh, &param, &atom);
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
#ifdef CUDA_TARGET #ifdef CUDA_TARGET
memcpyFromGPU(atom.x, c_atom.x, atom.Nmax * sizeof(MD_FLOAT) * 3); memcpyFromGPU(atom.x, atom.d_atom.x, atom.Nmax * sizeof(MD_FLOAT) * 3);
#endif #endif
computeThermo(n + 1, &param, &atom); computeThermo(n + 1, &param, &atom);
} }

View File

@ -169,7 +169,7 @@ void setupNeighbor(Parameter* param) {
bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int)); bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int));
} }
void buildNeighbor_cpu(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c_neighbor) { void buildNeighbor_cpu(Atom *atom, Neighbor *neighbor) {
int nall = atom->Nlocal + atom->Nghost; int nall = atom->Nlocal + atom->Nghost;
/* extend atom arrays if necessary */ /* extend atom arrays if necessary */
@ -228,7 +228,6 @@ void buildNeighbor_cpu(Atom *atom, Neighbor *neighbor, Atom *c_atom, Neighbor *c
} }
neighbor->numneigh[i] = n; neighbor->numneigh[i] = n;
if(n >= neighbor->maxneighs) { if(n >= neighbor->maxneighs) {
resize = 1; resize = 1;

View File

@ -44,7 +44,7 @@ void initPbc(Atom* atom) {
/* update coordinates of ghost atoms */ /* update coordinates of ghost atoms */
/* uses mapping created in setupPbc */ /* uses mapping created in setupPbc */
void updatePbc_cpu(Atom *atom, Atom *c_atom, Parameter *param, bool doReneighbor) { void updatePbc_cpu(Atom *atom, Parameter *param, bool doReneighbor) {
int *border_map = atom->border_map; int *border_map = atom->border_map;
int nlocal = atom->Nlocal; int nlocal = atom->Nlocal;
MD_FLOAT xprd = param->xprd; MD_FLOAT xprd = param->xprd;
@ -60,7 +60,7 @@ void updatePbc_cpu(Atom *atom, Atom *c_atom, Parameter *param, bool doReneighbor
/* relocate atoms that have left domain according /* relocate atoms that have left domain according
* to periodic boundary conditions */ * to periodic boundary conditions */
void updateAtomsPbc_cpu(Atom *atom, Atom *c_atom, Parameter *param) { void updateAtomsPbc_cpu(Atom *atom, Parameter *param) {
MD_FLOAT xprd = param->xprd; MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd; MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd; MD_FLOAT zprd = param->zprd;