Cleanup README

This commit is contained in:
Jan Eitzinger 2024-05-15 14:37:40 +02:00
parent 8d0a8b5f9c
commit 7a62c5c1ff

View File

@ -1,34 +1,14 @@
# MD-Bench # MD-Bench
![Image](figures/features-v3.png "MD-Bench Features") MD-Bench is a toolbox for the performance engineering of short-range force
calculation kernels on molecular-dynamics applications. It aims at covering all
MD-Bench is a toolbox for the performance engineering of short-range force calculation kernels on molecular-dynamics applications. available state-of-the-art algorithms from different community codes such as
It aims at covering all available state-of-the-art algorithms from different community codes such as LAMMPS and GROMACS. LAMMPS and GROMACS.
Apart from that, many tools to study and evaluate the in-depth performance of such kernels on distinct hardware are offered, like gather-bench, a standalone benchmark that mimics the data movement from MD kernels and the stubbed force calculation cases that focus on isolating the impacts caused by memory latencies and control flow divergence contributions in the overall performance.
<table>
<thead>
<tr>
<th>Verlet Lists</th>
<th>GROMACS MxN</th>
<th>Stubbed cases</th>
</tr>
</thead>
<tbody>
<tr>
<td><a target="_blank" rel="noopener noreferrer" href="figures/verlet_v2.png"><img src="figures/verlet_v2.png" alt="Image" title="Verlet Lists" style="width: 100%;"></a></td>
<td><a target="_blank" rel="noopener noreferrer" href="figures/gromacs_mxn_v2.png"><img src="figures/gromacs_mxn_v2.png" alt="Image" title="GROMACS MxN" style="width: 90%;"></a></td>
<td><a target="_blank" rel="noopener noreferrer" href="figures/stub_new_v3.png"><img src="figures/stub_new_v3.png" alt="Image" title="Stubbed cases" style="width: 100%;"></a></td>
</tr>
</tbody>
</table>
<!-- ![Image](figures/gather_bench.png "gather-bench") -->
## Build instructions ## Build instructions
Properly configure your building by changing `config.mk` file. The following options are available: Properly configure your building by changing `config.mk` file. The following
options are available:
- **TAG:** Compiler tag (available options: GCC, CLANG, ICC, ONEAPI, NVCC). - **TAG:** Compiler tag (available options: GCC, CLANG, ICC, ONEAPI, NVCC).
- **ISA:** Instruction set (available options: SSE, AVX, AVX\_FMA, AVX2, AVX512). - **ISA:** Instruction set (available options: SSE, AVX, AVX\_FMA, AVX2, AVX512).
@ -45,15 +25,18 @@ Properly configure your building by changing `config.mk` file. The following opt
- **COMPUTE\_STATS:** Compute statistics. - **COMPUTE\_STATS:** Compute statistics.
Configurations for LAMMPS Verlet Lists optimization scheme: Configurations for LAMMPS Verlet Lists optimization scheme:
- **ENABLE\_OMP\_SIMD:** Use omp simd pragma on half neighbor-lists kernels. - **ENABLE\_OMP\_SIMD:** Use omp simd pragma on half neighbor-lists kernels.
- **USE\_SIMD\_KERNEL:** Compile kernel with explicit SIMD intrinsics. - **USE\_SIMD\_KERNEL:** Compile kernel with explicit SIMD intrinsics.
Configurations for GROMACS MxN optimization scheme: Configurations for GROMACS MxN optimization scheme:
- **USE\_REFERENCE\_VERSION:** Use reference version (only for correction purposes). - **USE\_REFERENCE\_VERSION:** Use reference version (only for correction purposes).
- **XTC\_OUTPUT:** Enable XTC output. - **XTC\_OUTPUT:** Enable XTC output.
- **HALF\_NEIGHBOR\_LISTS\_CHECK\_CJ:** Check if j-clusters are local when decreasing the reaction force. - **HALF\_NEIGHBOR\_LISTS\_CHECK\_CJ:** Check if j-clusters are local when decreasing the reaction force.
Configurations for CUDA: Configurations for CUDA:
- **USE\_CUDA\_HOST\_MEMORY:** Use CUDA host memory to optimize host-device transfers. - **USE\_CUDA\_HOST\_MEMORY:** Use CUDA host memory to optimize host-device transfers.
When done, just use `make` to compile the code. When done, just use `make` to compile the code.
@ -68,11 +51,14 @@ Use the following command to run a simulation:
./MD-Bench-<TAG>-<OPT_SCHEME> [OPTION]... ./MD-Bench-<TAG>-<OPT_SCHEME> [OPTION]...
``` ```
Where `TAG` and `OPT_SCHEME` correspond to the building options with the same name. Where `TAG` and `OPT_SCHEME` correspond to the building options with the same
Without any options, a Copper FCC lattice system with size 32x32x32 (131072 atoms) over 200 time-steps using the Lennard-Jones potential (sigma=1.0, epsilon=1.0) is simulated. name. Without any options, a Copper FCC lattice system with size 32x32x32
(131072 atoms) over 200 time-steps using the Lennard-Jones potential (sigma=1.0,
epsilon=1.0) is simulated.
The default behavior and other options can be changed using the following parameters: The default behavior and other options can be changed using the following parameters:
```
```sh
-p <string>: file to read parameters from (can be specified more than once) -p <string>: file to read parameters from (can be specified more than once)
-f <string>: force field (lj or eam), default lj -f <string>: force field (lj or eam), default lj
-i <string>: input file with atom positions (dump) -i <string>: input file with atom positions (dump)
@ -92,11 +78,17 @@ TBD
## Citations ## Citations
Rafael Ravedutti Lucio Machado, Jan Eitzinger, Harald Köstler, and Gerhard Wellein: MD-Bench: A generic proxy-app toolbox for state-of-the-art molecular dynamics algorithms. Accepted for [PPAM](https://ppam.edu.pl/) 2022, the 14th International Conference on Parallel Processing and Applied Mathematics, Gdansk, Poland, September 11-14, 2022. PPAM 2022 Best Paper Award. Preprint: [arXiv:2207.13094](https://arxiv.org/abs/2207.13094) Rafael Ravedutti Lucio Machado, Jan Eitzinger, Harald Köstler, and Gerhard
Wellein: MD-Bench: A generic proxy-app toolbox for state-of-the-art molecular
dynamics algorithms. Accepted for [PPAM](https://ppam.edu.pl/) 2022, the 14th
International Conference on Parallel Processing and Applied Mathematics, Gdansk,
Poland, September 11-14, 2022. PPAM 2022 Best Paper Award. Preprint:
[arXiv:2207.13094](https://arxiv.org/abs/2207.13094)
## Credits ## Credits
MD-Bench is developed by the Erlangen National High Performance Computing Center ([NHR@FAU](https://hpc.fau.de/)) at the University of Erlangen-Nürnberg. MD-Bench is developed by the Erlangen National High Performance Computing Center
([NHR@FAU](https://hpc.fau.de/)) at the University of Erlangen-Nürnberg.
## License ## License