Add EAM force field

Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
Rafael Ravedutti 2021-10-26 00:40:39 +02:00
parent 9d16bb46c8
commit 2dac10469c
5 changed files with 538 additions and 6 deletions

254
src/eam_utils.c Normal file
View File

@ -0,0 +1,254 @@
#include <stdio.h>
#include <stdlib.h>
#include <allocate.h>
#include <atom.h>
#include <eam.h>
#include <parameter.h>
void initEam(Eam* eam, const char *input_file, int ntypes) {
eam->nmax = 0;
eam->fp = NULL;
eam->ntypes = ntypes;
eam->cutforcesq = (MD_FLOAT *) allocate(ALIGNMENT, ntypes * ntypes * sizeof(MD_FLOAT));
}
void coeff(Eam* eam, const char* arg) {
read_file(eam->file, arg);
int n = strlen(arg) + 1;
int ntypes = eam->ntypes;
double cutmax = eam->file->cut;
for(int i=0; i<ntypes*ntypes; i++)
eam->cutforcesq[i] = cutmax * cutmax;
}
void init_style(Eam* eam) {
// convert read-in file(s) to arrays and spline them
file2array(eam);
array2spline(eam);
}
void read_file(Funcfl* file, const char* filename) {
FILE* fptr;
char line[MAXLINE];
fptr = fopen(filename, "r");
if(fptr == NULL) {
printf("Can't open EAM Potential file: %s\n", filename);
exit(0);
}
int tmp;
fgets(line, MAXLINE, fptr);
fgets(line, MAXLINE, fptr);
sscanf(line, "%d %lg", &tmp, &(file->mass));
fgets(line, MAXLINE, fptr);
sscanf(line, "%d %lg %d %lg %lg", &file->nrho, &file->drho, &file->nr, &file->dr, &file->cut);
//printf("Read: %lf %i %lf %i %lf %lf\n",file->mass,file->nrho,file->drho,file->nr,file->dr,file->cut);
file->frho = (MD_FLOAT *) allocate(ALIGNMENT, (file->nhro + 1) * sizeof(MD_FLOAT));
file->rhor = (MD_FLOAT *) allocate(ALIGNMENT, (file->nr + 1) * sizeof(MD_FLOAT));
file->zr = (MD_FLOAT *) allocate(ALIGNMENT, (file->nr + 1) * sizeof(MD_FLOAT));
grab(fptr, file->nrho, file->frho);
grab(fptr, file->nr, file->zr);
grab(fptr, file->nr, file->rhor);
for(int i = file->nrho; i > 0; i--) file->frho[i] = file->frho[i - 1];
for(int i = file->nr; i > 0; i--) file->rhor[i] = file->rhor[i - 1];
for(int i = file->nr; i > 0; i--) file->zr[i] = file->zr[i - 1];
fclose(fptr);
}
void file2array(Eam* eam) {
int i, j, k, m, n;
double sixth = 1.0 / 6.0;
// determine max function params from all active funcfl files
// active means some element is pointing at it via map
int active;
double rmax, rhomax;
dr = drho = rmax = rhomax = 0.0;
active = 0;
Funcfl* file = eam->file;
dr = MAX(dr, file->dr);
drho = MAX(drho, file->drho);
rmax = MAX(rmax, (file->nr - 1) * file->dr);
rhomax = MAX(rhomax, (file->nrho - 1) * file->drho);
// set nr,nrho from cutoff and spacings
// 0.5 is for round-off in divide
eam->nr = static_cast<int>(rmax / dr + 0.5);
eam->nrho = static_cast<int>(rhomax / drho + 0.5);
// ------------------------------------------------------------------
// setup frho arrays
// ------------------------------------------------------------------
// allocate frho arrays
// nfrho = # of funcfl files + 1 for zero array
eam->frho = (MD_FLOAT *) allocate(ALIGNMENT, (eam->nhro + 1) * sizeof(MD_FLOAT));
// interpolate each file's frho to a single grid and cutoff
double r, p, cof1, cof2, cof3, cof4;
n = 0;
for(m = 1; m <= eam->nrho; m++) {
r = (m - 1) * drho;
p = r / file->drho + 1.0;
k = static_cast<int>(p);
k = MIN(k, file->nrho - 2);
k = MAX(k, 2);
p -= k;
p = MIN(p, 2.0);
cof1 = -sixth * p * (p - 1.0) * (p - 2.0);
cof2 = 0.5 * (p * p - 1.0) * (p - 2.0);
cof3 = -0.5 * p * (p + 1.0) * (p - 2.0);
cof4 = sixth * p * (p * p - 1.0);
eam->frho[m] = cof1 * file->frho[k - 1] + cof2 * file->frho[k] +
cof3 * file->frho[k + 1] + cof4 * file->frho[k + 2];
}
// ------------------------------------------------------------------
// setup rhor arrays
// ------------------------------------------------------------------
// allocate rhor arrays
// nrhor = # of funcfl files
eam->rhor = (MD_FLOAT *) allocate(ALIGNMENT, (eam->nr + 1) * sizeof(MD_FLOAT));
// interpolate each file's rhor to a single grid and cutoff
for(m = 1; m <= eam->nr; m++) {
r = (m - 1) * dr;
p = r / file->dr + 1.0;
k = static_cast<int>(p);
k = MIN(k, file->nr - 2);
k = MAX(k, 2);
p -= k;
p = MIN(p, 2.0);
cof1 = -sixth * p * (p - 1.0) * (p - 2.0);
cof2 = 0.5 * (p * p - 1.0) * (p - 2.0);
cof3 = -0.5 * p * (p + 1.0) * (p - 2.0);
cof4 = sixth * p * (p * p - 1.0);
eam->rhor[m] = cof1 * file->rhor[k - 1] + cof2 * file->rhor[k] +
cof3 * file->rhor[k + 1] + cof4 * file->rhor[k + 2];
//if(m==119)printf("BuildRho: %e %e %e %e %e %e\n",rhor[m],cof1,cof2,cof3,cof4,file->rhor[k]);
}
// type2rhor[i][j] = which rhor array (0 to nrhor-1) each type pair maps to
// for funcfl files, I,J mapping only depends on I
// OK if map = -1 (non-EAM atom in pair hybrid) b/c type2rhor not used
// ------------------------------------------------------------------
// setup z2r arrays
// ------------------------------------------------------------------
// allocate z2r arrays
// nz2r = N*(N+1)/2 where N = # of funcfl files
eam->z2r = (MD_FLOAT *) allocate(ALIGNMENT, (eam->nr + 1) * sizeof(MD_FLOAT));
// create a z2r array for each file against other files, only for I >= J
// interpolate zri and zrj to a single grid and cutoff
double zri, zrj;
Funcfl* ifile = eam->file;
Funcfl* jfile = eam->file;
for(m = 1; m <= eam->nr; m++) {
r = (m - 1) * dr;
p = r / ifile->dr + 1.0;
k = static_cast<int>(p);
k = MIN(k, ifile->nr - 2);
k = MAX(k, 2);
p -= k;
p = MIN(p, 2.0);
cof1 = -sixth * p * (p - 1.0) * (p - 2.0);
cof2 = 0.5 * (p * p - 1.0) * (p - 2.0);
cof3 = -0.5 * p * (p + 1.0) * (p - 2.0);
cof4 = sixth * p * (p * p - 1.0);
zri = cof1 * ifile->zr[k - 1] + cof2 * ifile->zr[k] +
cof3 * ifile->zr[k + 1] + cof4 * ifile->zr[k + 2];
p = r / jfile->dr + 1.0;
k = static_cast<int>(p);
k = MIN(k, jfile->nr - 2);
k = MAX(k, 2);
p -= k;
p = MIN(p, 2.0);
cof1 = -sixth * p * (p - 1.0) * (p - 2.0);
cof2 = 0.5 * (p * p - 1.0) * (p - 2.0);
cof3 = -0.5 * p * (p + 1.0) * (p - 2.0);
cof4 = sixth * p * (p * p - 1.0);
zrj = cof1 * jfile->zr[k - 1] + cof2 * jfile->zr[k] +
cof3 * jfile->zr[k + 1] + cof4 * jfile->zr[k + 2];
eam->z2r[m] = 27.2 * 0.529 * zri * zrj;
}
}
void array2spline(Eam* eam) {
rdr = 1.0 / eam->dr;
rdrho = 1.0 / eam->drho;
nrho_tot = (eam->nrho + 1) * 7 + 64;
nr_tot = (eam->nr + 1) * 7 + 64;
nrho_tot -= nrho_tot%64;
nr_tot -= nr_tot%64;
int ntypes = eam->ntypes;
eam->frho_spline = (MD_FLOAT *) allocate(ALIGNMENT, ntypes * ntypes * nrho_tot * sizeof(MD_FLOAT));
eam->rhor_spline = (MD_FLOAT *) allocate(ALIGNMENT, ntypes * ntypes * nr_tot * sizeof(MD_FLOAT));
eam->z2r_spline = (MD_FLOAT *) allocate(ALIGNMENT, ntypes * ntypes * nr_tot * sizeof(MD_FLOAT));
interpolate(eam->nrho, eam->drho, eam->frho, eam->frho_spline);
interpolate(eam->nr, eam->dr, eam->rhor, eam->rhor_spline);
interpolate(eam->nr, eam->dr, eam->z2r, eam->z2r_spline);
// replicate data for multiple types;
for(int tt = 0; tt < ntypes * ntypes; tt++) {
for(int k = 0; k < nrho_tot; k++)
eam->frho_spline[tt*nrho_tot + k] = eam->frho_spline[k];
for(int k = 0; k < nr_tot; k++)
eam->rhor_spline[tt*nr_tot + k] = eam->rhor_spline[k];
for(int k = 0; k < nr_tot; k++)
eam->z2r_spline[tt*nr_tot + k] = eam->z2r_spline[k];
}
}
void interpolate(MMD_int n, MMD_float delta, MMD_float* f, MMD_float* spline) {
for(int m = 1; m <= n; m++) spline[m * 7 + 6] = f[m];
spline[1 * 7 + 5] = spline[2 * 7 + 6] - spline[1 * 7 + 6];
spline[2 * 7 + 5] = 0.5 * (spline[3 * 7 + 6] - spline[1 * 7 + 6]);
spline[(n - 1) * 7 + 5] = 0.5 * (spline[n * 7 + 6] - spline[(n - 2) * 7 + 6]);
spline[n * 7 + 5] = spline[n * 7 + 6] - spline[(n - 1) * 7 + 6];
for(int m = 3; m <= n - 2; m++)
spline[m * 7 + 5] = ((spline[(m - 2) * 7 + 6] - spline[(m + 2) * 7 + 6]) +
8.0 * (spline[(m + 1) * 7 + 6] - spline[(m - 1) * 7 + 6])) / 12.0;
for(int m = 1; m <= n - 1; m++) {
spline[m * 7 + 4] = 3.0 * (spline[(m + 1) * 7 + 6] - spline[m * 7 + 6]) -
2.0 * spline[m * 7 + 5] - spline[(m + 1) * 7 + 5];
spline[m * 7 + 3] = spline[m * 7 + 5] + spline[(m + 1) * 7 + 5] -
2.0 * (spline[(m + 1) * 7 + 6] - spline[m * 7 + 6]);
}
spline[n * 7 + 4] = 0.0;
spline[n * 7 + 3] = 0.0;
for(int m = 1; m <= n; m++) {
spline[m * 7 + 2] = spline[m * 7 + 5] / delta;
spline[m * 7 + 1] = 2.0 * spline[m * 7 + 4] / delta;
spline[m * 7 + 0] = 3.0 * spline[m * 7 + 3] / delta;
}
}
void grab(FILE* fptr, MMD_int n, MMD_float* list) {
char* ptr;
char line[MAXLINE];
int i = 0;
while(i < n) {
fgets(line, MAXLINE, fptr);
ptr = strtok(line, " \t\n\r\f");
list[i++] = atof(ptr);
while(ptr = strtok(NULL, " \t\n\r\f")) list[i++] = atof(ptr);
}
}

173
src/force_eam.c Normal file
View File

@ -0,0 +1,173 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <likwid-marker.h>
#include <allocate.h>
#include <timing.h>
#include <neighbor.h>
#include <parameter.h>
#include <atom.h>
#include <stats.h>
#include <eam.h>
double computeForceEam(Eam* eam, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep) {
if(atom->nmax > eam->nmax) {
eam->nmax = atom->nmax;
if(eam->fp != NULL) { free(eam->fp); }
eam->fp = (MD_FLOAT *) allocate(ALIGNMENT, atom->nmax * sizeof(MD_FLOAT));
}
int Nlocal = atom->Nlocal;
int* neighs;
MD_FLOAT* fx = atom->fx; MD_FLOAT* fy = atom->fy; MD_FLOAT* fz = atom->fz; MD_FLOAT* fp = eam->fp;
MD_FLOAT* rhor_spline = eam->rhor_spline; MD_FLOAT* fhro_spline = eam->fhro_spline; MD_FLOAT* z2r_spline = eam->z2r_spline;
double S = getTimeStamp();
LIKWID_MARKER_START("force_eam_fp");
#pragma omp parallel for
for(int i = 0; i < Nlocal; i++) {
neighs = &neighbor->neighbors[i * neighbor->maxneighs];
int numneighs = neighbor->numneigh[i];
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
MD_FLOAT rhoi = 0;
const int type_i = atom->type[i];
#pragma ivdep
for(int k = 0; k < numneighs; k++) {
int j = neighs[k];
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
if(rsq < cutforcesq) {
MD_FLOAT p = sqrt(rsq) * rdr + 1.0;
int m = static_cast<int>(p);
m = m < nr - 1 ? m : nr - 1;
p -= m;
p = p < 1.0 ? p : 1.0;
rhoi += ((rhor_spline[type_ij * nr_tot + m * 7 + 3] * p +
rhor_spline[type_ij * nr_tot + m * 7 + 4]) * p +
rhor_spline[type_ij * nr_tot + m * 7 + 5]) * p +
rhor_spline[type_ij * nr_tot + m * 7 + 6];
}
}
const int type_ii = type_i * type_i;
MD_FLOAT p = 1.0 * rhoi * rdrho + 1.0;
int m = static_cast<int>(p);
m = MAX(1, MIN(m, nrho - 1));
p -= m;
p = MIN(p, 1.0);
fp[i] = (frho_spline[type_ii * nrho_tot + m * 7 + 0] * p +
frho_spline[type_ii * nrho_tot + m * 7 + 1]) * p +
frho_spline[type_ii * nrho_tot + m * 7 + 2];
}
LIKWID_MARKER_STOP("force_eam_fp");
LIKWID_MARKER_START("force_eam");
for(int i = 0; i < Nlocal; i++) {
neighs = &neighbor->neighbors[i * neighbor->maxneighs];
int numneighs = neighbor->numneigh[i];
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
MD_FLOAT fix = 0;
MD_FLOAT fiy = 0;
MD_FLOAT fiz = 0;
const int type_i = atom->type[i];
#pragma ivdep
for(int k = 0; k < numneighs; k++) {
int j = neighs[k];
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
if(rsq < cutforcesq) {
MMD_float r = sqrt(rsq);
MMD_float p = r * rdr + 1.0;
int m = static_cast<int>(p);
m = m < nr - 1 ? m : nr - 1;
p -= m;
p = p < 1.0 ? p : 1.0;
// rhoip = derivative of (density at atom j due to atom i)
// rhojp = derivative of (density at atom i due to atom j)
// phi = pair potential energy
// phip = phi'
// z2 = phi * r
// z2p = (phi * r)' = (phi' r) + phi
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
MMD_float rhoip = (rhor_spline[type_ij * nr_tot + m * 7 + 0] * p +
rhor_spline[type_ij * nr_tot + m * 7 + 1]) * p +
rhor_spline[type_ij * nr_tot + m * 7 + 2];
MMD_float z2p = (z2r_spline[type_ij * nr_tot + m * 7 + 0] * p +
z2r_spline[type_ij * nr_tot + m * 7 + 1]) * p +
z2r_spline[type_ij * nr_tot + m * 7 + 2];
MMD_float z2 = ((z2r_spline[type_ij * nr_tot + m * 7 + 3] * p +
z2r_spline[type_ij * nr_tot + m * 7 + 4]) * p +
z2r_spline[type_ij * nr_tot + m * 7 + 5]) * p +
z2r_spline[type_ij * nr_tot + m * 7 + 6];
MMD_float recip = 1.0 / r;
MMD_float phi = z2 * recip;
MMD_float phip = z2p * recip - phi * recip;
MMD_float psip = fp[i] * rhoip + fp[j] * rhoip + phip;
MMD_float fpair = -psip * recip;
fix += delx * fpair;
fiy += dely * fpair;
fiz += delz * fpair;
//fpair *= 0.5;
}
}
fx[i] = fix;
fy[i] = fiy;
fz[i] = fiz;
addStat(stats->total_force_neighs, numneighs);
addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH);
}
LIKWID_MARKER_STOP("force_eam");
double E = getTimeStamp();
return E-S;
}

54
src/includes/eam.h Normal file
View File

@ -0,0 +1,54 @@
/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <atom.h>
#include <parameter.h>
#ifndef __EAM_H_
#define __EAM_H_
typedef struct {
int nrho, nr;
MD_FLOAT drho, dr, cut, mass;
MD_FLOAT *frho, *rhor, *zr;
} Funcfl;
typedef struct {
MD_FLOAT* fp;
int nmax;
int nrho, nr;
int nrho_tot, nr_tot;
MD_FLOAT dr, rdr, drho, rdrho;
MD_FLOAT *frho, *rhor, *z2r;
MD_FLOAT *rhor_spline, *frho_spline, *z2r_spline;
MD_FLOAT *cutforcesq;
Funcfl* file;
} Eam;
void init_eam(Eam* eam, int ntypes);
void coeff(Eam* eam, const char* arg);
void init_style(Eam* eam);
void read_file(Funcfl* file, const char* filename);
void file2array(Eam* eam);
void array2spline(Eam* eam);
void interpolate(MMD_int n, MMD_float delta, MMD_float* f, MMD_float* spline);
void grab(FILE* fptr, MMD_int n, MMD_float* list);
#endif

View File

@ -23,6 +23,9 @@
#ifndef __PARAMETER_H_ #ifndef __PARAMETER_H_
#define __PARAMETER_H_ #define __PARAMETER_H_
#define FF_LJ 0
#define FF_EAM 1
#if PRECISION == 1 #if PRECISION == 1
#define MD_FLOAT float #define MD_FLOAT float
#else #else
@ -30,6 +33,7 @@
#endif #endif
typedef struct { typedef struct {
char* input_file;
MD_FLOAT epsilon; MD_FLOAT epsilon;
MD_FLOAT sigma6; MD_FLOAT sigma6;
MD_FLOAT temp; MD_FLOAT temp;

View File

@ -39,13 +39,17 @@
#include <thermo.h> #include <thermo.h>
#include <pbc.h> #include <pbc.h>
#include <timers.h> #include <timers.h>
#include <eam.h>
#define HLINE "----------------------------------------------------------------------------\n" #define HLINE "----------------------------------------------------------------------------\n"
extern double computeForce(Parameter*, Atom*, Neighbor*, Stats*, int, int); extern double computeForce(Parameter*, Atom*, Neighbor*, Stats*, int, int);
extern double computeForceEam(Eam* eam, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep);
void init(Parameter *param) void init(Parameter *param)
{ {
param->input_file = NULL;
param->force_field = FF_LJ;
param->epsilon = 1.0; param->epsilon = 1.0;
param->sigma6 = 1.0; param->sigma6 = 1.0;
param->rho = 0.8442; param->rho = 0.8442;
@ -67,6 +71,7 @@ void init(Parameter *param)
double setup( double setup(
Parameter *param, Parameter *param,
Eam *eam,
Atom *atom, Atom *atom,
Neighbor *neighbor, Neighbor *neighbor,
Stats *stats) Stats *stats)
@ -78,6 +83,7 @@ double setup(
param->zprd = param->nz * param->lattice; param->zprd = param->nz * param->lattice;
S = getTimeStamp(); S = getTimeStamp();
if(param->force_field == FF_EAM) { initEam(eam, param->input_file, param->ntypes); }
initAtom(atom); initAtom(atom);
initNeighbor(neighbor, param); initNeighbor(neighbor, param);
initPbc(); initPbc();
@ -153,9 +159,24 @@ void printAtomState(Atom *atom)
/* } */ /* } */
} }
int str2ff(const char *string)
{
if(strncmp(string, "lj", 2) == 0) return FF_LJ;
if(strncmp(string, "eam", 3) == 0) return FF_EAM;
return -1;
}
const char* ff2str(int ff)
{
if(ff == FF_LJ) { return "lj"; }
if(ff == FF_EAM) { return "eam"; }
return "invalid";
}
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
double timer[NUMTIMER]; double timer[NUMTIMER];
Eam eam;
Atom atom; Atom atom;
Neighbor neighbor; Neighbor neighbor;
Stats stats; Stats stats;
@ -172,6 +193,19 @@ int main (int argc, char** argv)
for(int i = 0; i < argc; i++) for(int i = 0; i < argc; i++)
{ {
if((strcmp(argv[i], "-f") == 0))
{
if((param.force_field = str2ff(argv[++i])) < 0) {
fprintf(stderr, "Invalid force field!\n");
exit(-1);
}
continue;
}
if((strcmp(argv[i], "-i") == 0))
{
param.input_file = strdup(argv[++i]);
continue;
}
if((strcmp(argv[i], "-n") == 0) || (strcmp(argv[i], "--nsteps") == 0)) if((strcmp(argv[i], "-n") == 0) || (strcmp(argv[i], "--nsteps") == 0))
{ {
param.ntimes = atoi(argv[++i]); param.ntimes = atoi(argv[++i]);
@ -192,7 +226,7 @@ int main (int argc, char** argv)
param.nz = atoi(argv[++i]); param.nz = atoi(argv[++i]);
continue; continue;
} }
if((strcmp(argv[i], "-f") == 0)) if((strcmp(argv[i], "--freq") == 0))
{ {
param.proc_freq = atof(argv[++i]); param.proc_freq = atof(argv[++i]);
continue; continue;
@ -201,17 +235,24 @@ int main (int argc, char** argv)
{ {
printf("MD Bench: A minimalistic re-implementation of miniMD\n"); printf("MD Bench: A minimalistic re-implementation of miniMD\n");
printf(HLINE); printf(HLINE);
printf("-f <string>: force field (lj or eam), default lj\n");
printf("-i <string>: input file for EAM\n");
printf("-n / --nsteps <int>: set number of timesteps for simulation\n"); printf("-n / --nsteps <int>: set number of timesteps for simulation\n");
printf("-nx/-ny/-nz <int>: set linear dimension of systembox in x/y/z direction\n"); printf("-nx/-ny/-nz <int>: set linear dimension of systembox in x/y/z direction\n");
printf("-f <real>: processor frequency (GHz)\n"); printf("--freq <real>: processor frequency (GHz)\n");
printf(HLINE); printf(HLINE);
exit(EXIT_SUCCESS); exit(EXIT_SUCCESS);
} }
} }
setup(&param, &atom, &neighbor, &stats); setup(&param, &eam, &atom, &neighbor, &stats);
computeThermo(0, &param, &atom); computeThermo(0, &param, &atom);
if(param.force_field == FF_EAM) {
computeForceEam(&eam, &atom, &neighbor, &stats, 1, 0);
} else {
computeForce(&param, &atom, &neighbor, &stats, 1, 0); computeForce(&param, &atom, &neighbor, &stats, 1, 0);
}
timer[FORCE] = 0.0; timer[FORCE] = 0.0;
timer[NEIGH] = 0.0; timer[NEIGH] = 0.0;
@ -226,7 +267,12 @@ int main (int argc, char** argv)
timer[NEIGH] += reneighbour(&param, &atom, &neighbor); timer[NEIGH] += reneighbour(&param, &atom, &neighbor);
} }
if(param.force_field == FF_EAM) {
timer[FORCE] += computeForceEam(&eam, &atom, &neighbor, &stats, 0, n + 1);
} else {
timer[FORCE] += computeForce(&param, &atom, &neighbor, &stats, 0, n + 1); timer[FORCE] += computeForce(&param, &atom, &neighbor, &stats, 0, n + 1);
}
finalIntegrate(&param, &atom); finalIntegrate(&param, &atom);
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
@ -238,6 +284,7 @@ int main (int argc, char** argv)
computeThermo(-1, &param, &atom); computeThermo(-1, &param, &atom);
printf(HLINE); printf(HLINE);
printf("Force field: %s\n", ff2str(param.force_field));
printf("Data layout for positions: %s\n", POS_DATA_LAYOUT); printf("Data layout for positions: %s\n", POS_DATA_LAYOUT);
#if PRECISION == 1 #if PRECISION == 1
printf("Using single precision floating point.\n"); printf("Using single precision floating point.\n");