Fixed cudaMemcpy for AOS data layout, added debug outputs, added cudaErrorChecks

This commit is contained in:
Maximilian Gaul 2021-11-11 20:14:30 +01:00
parent 1a54314c8b
commit 29e115464b

View File

@ -36,11 +36,22 @@ extern "C" {
#include <atom.h> #include <atom.h>
} }
void checkError(const char *msg, cudaError_t err)
{
if (err != cudaSuccess)
{
//print a human readable error message
printf("[CUDA ERROR %s]: %s\r\n", msg, cudaGetErrorString(err));
exit(-1);
}
}
// cuda kernel // cuda kernel
__global__ void calc_force( __global__ void calc_force(
Atom a, Atom a,
MD_FLOAT xtmp, MD_FLOAT ytmp, MD_FLOAT ztmp, MD_FLOAT xtmp, MD_FLOAT ytmp, MD_FLOAT ztmp,
MD_FLOAT *fix, MD_FLOAT *fiy, MD_FLOAT *fiz, MD_FLOAT *fix, MD_FLOAT *fiy, MD_FLOAT *fiz,
MD_FLOAT cutforcesq, MD_FLOAT sigma6, MD_FLOAT epsilon,
int i, int numneighs, int *neighs) { int i, int numneighs, int *neighs) {
// Calculate idx k from thread information // Calculate idx k from thread information
@ -51,26 +62,28 @@ __global__ void calc_force(
Atom *atom = &a; Atom *atom = &a;
int j = neighs[k]; const int j = neighs[k];
MD_FLOAT delx = xtmp - atom_x(j); MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j); MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j); MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz; MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
const int type_i = atom->type[i]; const int type_i = atom->type[i];
const int type_j = atom->type[j]; const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j; const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij]; const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
const MD_FLOAT sigma6 = atom->sigma6[type_ij]; const MD_FLOAT sigma6 = atom->sigma6[type_ij];
const MD_FLOAT epsilon = atom->epsilon[type_ij]; const MD_FLOAT epsilon = atom->epsilon[type_ij];
#endif
if(rsq < cutforcesq) { if(rsq < cutforcesq) {
MD_FLOAT sr2 = 1.0 / rsq; MD_FLOAT sr2 = 1.0 / rsq;
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6; MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon; MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
fix[j] = delx * force; fix[k] = delx * force;
fiy[j] = dely * force; fiy[k] = dely * force;
fiz[j] = delz * force; fiz[k] = delz * force;
} }
} }
@ -89,6 +102,8 @@ double computeForce(
MD_FLOAT* fz = atom->fz; MD_FLOAT* fz = atom->fz;
#ifndef EXPLICIT_TYPES #ifndef EXPLICIT_TYPES
MD_FLOAT cutforcesq = param->cutforce * param->cutforce; MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
MD_FLOAT sigma6 = param->sigma6;
MD_FLOAT epsilon = param->epsilon;
#endif #endif
for(int i = 0; i < Nlocal; i++) { for(int i = 0; i < Nlocal; i++) {
@ -97,10 +112,40 @@ double computeForce(
fz[i] = 0.0; fz[i] = 0.0;
} }
Atom c_atom;
c_atom.Natoms = atom->Natoms;
c_atom.Nlocal = atom->Nlocal;
c_atom.Nghost = atom->Nghost;
c_atom.Nmax = atom->Nmax;
c_atom.ntypes = atom->ntypes;
size_t available, total;
cudaMemGetInfo(&available, &total);
printf("Available memory: %ldGB\r\n", available / 1024 / 1024 / 1024);
cudaDeviceSetLimit(cudaLimitMallocHeapSize, available);
// HINT: Run with cuda-memcheck ./MDBench-NVCC in case of error
// HINT: Only works for data layout = AOS!!!
checkError( "Malloc1", cudaMalloc((void**)&(c_atom.x), sizeof(MD_FLOAT) * atom->Nmax * 3) );
checkError( "Memcpy1", cudaMemcpy((void*)(c_atom.x), atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkError( "Malloc4", cudaMalloc((void**)&(c_atom.type), sizeof(int) * atom->Nmax) );
checkError( "Memcpy4", cudaMemcpy(c_atom.type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
checkError( "Malloc5", cudaMalloc((void**)&(c_atom.epsilon), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkError( "Memcpy5", cudaMemcpy(c_atom.epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkError( "Malloc6", cudaMalloc((void**)&(c_atom.sigma6), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkError( "Memcpy6", cudaMemcpy(c_atom.sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkError( "Malloc7", cudaMalloc((void**)&(c_atom.cutforcesq), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkError( "Memcpy7", cudaMemcpy(c_atom.cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
double S = getTimeStamp(); double S = getTimeStamp();
LIKWID_MARKER_START("force"); LIKWID_MARKER_START("force");
#pragma omp parallel for // #pragma omp parallel for
for(int i = 0; i < Nlocal; i++) { for(int i = 0; i < Nlocal; i++) {
neighs = &neighbor->neighbors[i * neighbor->maxneighs]; neighs = &neighbor->neighbors[i * neighbor->maxneighs];
int numneighs = neighbor->numneigh[i]; int numneighs = neighbor->numneigh[i];
@ -112,30 +157,6 @@ double computeForce(
const int type_i = atom->type[i]; const int type_i = atom->type[i];
#endif #endif
Atom c_atom;
memcpy(&c_atom, atom, sizeof(Atom));
cudaMalloc((void**)&(&c_atom)->x, sizeof(MD_FLOAT) * atom->Nmax * 3);
cudaMemcpy(c_atom.x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice);
cudaMalloc((void**)&(&c_atom)->y, sizeof(MD_FLOAT) * atom->Nmax * 3);
cudaMemcpy(c_atom.y, atom->y, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice);
cudaMalloc((void**)&(&c_atom)->z, sizeof(MD_FLOAT) * atom->Nmax * 3);
cudaMemcpy(c_atom.z, atom->z, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice);
cudaMalloc((void**)&(&c_atom)->type, sizeof(int) * atom->Nmax);
cudaMemcpy(c_atom.type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice);
cudaMalloc((void**)&(&c_atom)->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
cudaMemcpy(c_atom.epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice);
cudaMalloc((void**)&(&c_atom)->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
cudaMemcpy(c_atom.sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice);
cudaMalloc((void**)&(&c_atom)->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes);
cudaMemcpy(c_atom.cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice);
int *c_neighs; int *c_neighs;
cudaMalloc((void**)&c_neighs, sizeof(int) * numneighs); cudaMalloc((void**)&c_neighs, sizeof(int) * numneighs);
cudaMemcpy(c_neighs, neighs, sizeof(int) * numneighs, cudaMemcpyHostToDevice); cudaMemcpy(c_neighs, neighs, sizeof(int) * numneighs, cudaMemcpyHostToDevice);
@ -150,29 +171,30 @@ double computeForce(
// printf("numneighs: %d => num-blocks: %d, num_threads_per_block => %d\r\n", numneighs, num_blocks, num_threads_per_block); // printf("numneighs: %d => num-blocks: %d, num_threads_per_block => %d\r\n", numneighs, num_blocks, num_threads_per_block);
// launch cuda kernel // launch cuda kernel
calc_force <<< num_blocks, num_threads_per_block >>> (c_atom, xtmp, ytmp, ztmp, c_fix, c_fiy, c_fiz, i, numneighs, c_neighs); calc_force <<< num_blocks, num_threads_per_block >>> (c_atom, xtmp, ytmp, ztmp, c_fix, c_fiy, c_fiz, cutforcesq, sigma6, epsilon, i, numneighs, c_neighs);
cudaDeviceSynchronize(); checkError( "PeekAtLastError", cudaPeekAtLastError() );
checkError( "DeviceSync", cudaDeviceSynchronize() );
printf("CUDA done!\r\n");
// sum result // sum result
MD_FLOAT *d_fix, *d_fiy, *d_fiz; MD_FLOAT *d_fix = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
d_fix = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs); MD_FLOAT *d_fiy = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
d_fiy = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs); MD_FLOAT *d_fiz = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
d_fiz = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
cudaMemcpy((void**)&d_fix, c_fix, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost); cudaMemcpy((void**)&d_fix, c_fix, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost);
cudaMemcpy((void**)&d_fiy, c_fiy, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost); cudaMemcpy((void**)&d_fiy, c_fiy, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost);
cudaMemcpy((void**)&d_fiz, c_fiz, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost); cudaMemcpy((void**)&d_fiz, c_fiz, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost);
printf("COPY ALLOC done!\r\n");
for(int k = 0; k < numneighs; k++) { for(int k = 0; k < numneighs; k++) {
printf("%d\r\n", k);
fx[i] += d_fix[k]; fx[i] += d_fix[k];
fy[i] += d_fiy[k]; fy[i] += d_fiy[k];
fz[i] += d_fiz[k]; fz[i] += d_fiz[k];
} }
cudaFree(c_fix); cudaFree(c_fiy); cudaFree(c_fiz); cudaFree(c_neighs); printf("COPY done!\r\n");
cudaFree(c_atom.x); cudaFree(c_atom.y); cudaFree(c_atom.z); cudaFree(c_atom.type);
cudaFree(c_atom.epsilon); cudaFree(c_atom.sigma6); cudaFree(c_atom.cutforcesq);
free(d_fix); free(d_fiy); free(d_fiz);
} }
LIKWID_MARKER_STOP("force"); LIKWID_MARKER_STOP("force");