Move common modules to common directory
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
		
							
								
								
									
										126
									
								
								common/includes/simd/avx512_double.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										126
									
								
								common/includes/simd/avx512_double.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,126 @@
 | 
			
		||||
/*
 | 
			
		||||
 * =======================================================================================
 | 
			
		||||
 *
 | 
			
		||||
 *   Author:   Jan Eitzinger (je), jan.eitzinger@fau.de
 | 
			
		||||
 *   Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
 | 
			
		||||
 *
 | 
			
		||||
 *   This file is part of MD-Bench.
 | 
			
		||||
 *
 | 
			
		||||
 *   MD-Bench is free software: you can redistribute it and/or modify it
 | 
			
		||||
 *   under the terms of the GNU Lesser General Public License as published
 | 
			
		||||
 *   by the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 *   (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 *   MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
 | 
			
		||||
 *   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 | 
			
		||||
 *   PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
 | 
			
		||||
 *   details.
 | 
			
		||||
 *
 | 
			
		||||
 *   You should have received a copy of the GNU Lesser General Public License along
 | 
			
		||||
 *   with MD-Bench.  If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 * =======================================================================================
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <immintrin.h>
 | 
			
		||||
#ifndef NO_ZMM_INTRIN
 | 
			
		||||
#   include <zmmintrin.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define MD_SIMD_FLOAT   __m512d
 | 
			
		||||
#define MD_SIMD_MASK    __mmask8
 | 
			
		||||
#define MD_SIMD_INT     __m256i
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm512_set1_pd(scalar); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_zero() { return _mm512_set1_pd(0.0); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_add_pd(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_sub_pd(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_mul_pd(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm512_fmadd_pd(a, b, c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm512_rcp14_pd(a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm512_mask_add_pd(a, m, a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_cmp_pd_mask(a, b, _CMP_LT_OQ); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
 | 
			
		||||
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm512_load_pd(p); }
 | 
			
		||||
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm512_store_pd(p, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm512_mask_mov_pd(_mm512_setzero_pd(), m, a); }
 | 
			
		||||
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    MD_SIMD_FLOAT x = _mm512_add_pd(a, _mm512_shuffle_f64x2(a, a, 0xee));
 | 
			
		||||
    x = _mm512_add_pd(x, _mm512_shuffle_f64x2(x, x, 0x11));
 | 
			
		||||
    x = _mm512_add_pd(x, _mm512_permute_pd(x, 0x01));
 | 
			
		||||
    return *((MD_FLOAT *) &x);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1, MD_SIMD_FLOAT v2, MD_SIMD_FLOAT v3) {
 | 
			
		||||
    __m512d t0, t2;
 | 
			
		||||
    __m256d t3, t4;
 | 
			
		||||
 | 
			
		||||
    t0 = _mm512_add_pd(v0, _mm512_permute_pd(v0, 0x55));
 | 
			
		||||
    t2 = _mm512_add_pd(v2, _mm512_permute_pd(v2, 0x55));
 | 
			
		||||
    t0 = _mm512_mask_add_pd(t0, simd_mask_from_u32(0xaa), v1, _mm512_permute_pd(v1, 0x55));
 | 
			
		||||
    t2 = _mm512_mask_add_pd(t2, simd_mask_from_u32(0xaa), v3, _mm512_permute_pd(v3, 0x55));
 | 
			
		||||
    t0 = _mm512_add_pd(t0, _mm512_shuffle_f64x2(t0, t0, 0x4e));
 | 
			
		||||
    t0 = _mm512_mask_add_pd(t0, simd_mask_from_u32(0xF0), t2, _mm512_shuffle_f64x2(t2, t2, 0x4e));
 | 
			
		||||
    t0 = _mm512_add_pd(t0, _mm512_shuffle_f64x2(t0, t0, 0xb1));
 | 
			
		||||
    t0 = _mm512_mask_shuffle_f64x2(t0, simd_mask_from_u32(0x0C), t0, t0, 0xee);
 | 
			
		||||
    t3 = _mm512_castpd512_pd256(t0);
 | 
			
		||||
    t4 = _mm256_load_pd(m);
 | 
			
		||||
    t4 = _mm256_add_pd(t4, t3);
 | 
			
		||||
    _mm256_store_pd(m, t4);
 | 
			
		||||
 | 
			
		||||
    t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0x4e));
 | 
			
		||||
    t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0xb1));
 | 
			
		||||
    return _mm_cvtsd_f64(_mm512_castpd512_pd128(t0));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
 | 
			
		||||
    return _mm512_broadcast_f64x4(_mm256_load_pd(m));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
 | 
			
		||||
    return _mm512_insertf64x4(_mm512_broadcastsd_pd(_mm_load_sd(m)), _mm256_broadcastsd_pd(_mm_load_sd(m + 1)), 1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
 | 
			
		||||
    __m512d t0;
 | 
			
		||||
    __m256d t2, t3;
 | 
			
		||||
 | 
			
		||||
    t0 = _mm512_add_pd(v0, _mm512_permutex_pd(v0, 0x4e));
 | 
			
		||||
    t0 = _mm512_mask_add_pd(t0, simd_mask_from_u32(0xccul), v1, _mm512_permutex_pd(v1, 0x4e));
 | 
			
		||||
    t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0xb1));
 | 
			
		||||
    t0 = _mm512_mask_shuffle_f64x2(t0, simd_mask_from_u32(0xaaul), t0, t0, 0xee);
 | 
			
		||||
    t2 = _mm512_castpd512_pd256(t0);
 | 
			
		||||
    t3 = _mm256_load_pd(m);
 | 
			
		||||
    t3 = _mm256_add_pd(t3, t2);
 | 
			
		||||
    _mm256_store_pd(m, t3);
 | 
			
		||||
 | 
			
		||||
    t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0x4e));
 | 
			
		||||
    t0 = _mm512_add_pd(t0, _mm512_permutex_pd(t0, 0xb1));
 | 
			
		||||
    return _mm_cvtsd_f64(_mm512_castpd512_pd128(t0));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline void simd_h_decr(MD_FLOAT *m, MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m256d t;
 | 
			
		||||
    a = _mm512_add_pd(a, _mm512_shuffle_f64x2(a, a, 0xee));
 | 
			
		||||
    t = _mm256_load_pd(m);
 | 
			
		||||
    t = _mm256_sub_pd(t, _mm512_castpd512_pd256(a));
 | 
			
		||||
    _mm256_store_pd(m, t);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
 | 
			
		||||
    simd_h_decr(m, a0);
 | 
			
		||||
    simd_h_decr(m + CLUSTER_N, a1);
 | 
			
		||||
    simd_h_decr(m + CLUSTER_N * 2, a2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Functions used in LAMMPS kernel
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_gather(MD_SIMD_INT vidx, const MD_FLOAT *m, int s) { return _mm512_i32gather_pd(vidx, m, s); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_broadcast(int scalar) { return _mm256_set1_epi32(scalar); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_zero() { return _mm256_setzero_si256(); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_seq() { return _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_load(const int *m) { return _mm256_load_epi32(m); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_add(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm256_add_epi32(a, b); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_mul(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm256_mul_epi32(a, b); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_mask_load(const int *m, MD_SIMD_MASK k) { return _mm256_mask_load_epi32(simd_int_zero(), k, m); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_int_cond_lt(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm256_cmp_epi32_mask(a, b, _MM_CMPINT_LT); }
 | 
			
		||||
							
								
								
									
										101
									
								
								common/includes/simd/avx512_float.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								common/includes/simd/avx512_float.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,101 @@
 | 
			
		||||
/*
 | 
			
		||||
 * =======================================================================================
 | 
			
		||||
 *
 | 
			
		||||
 *   Author:   Jan Eitzinger (je), jan.eitzinger@fau.de
 | 
			
		||||
 *   Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
 | 
			
		||||
 *
 | 
			
		||||
 *   This file is part of MD-Bench.
 | 
			
		||||
 *
 | 
			
		||||
 *   MD-Bench is free software: you can redistribute it and/or modify it
 | 
			
		||||
 *   under the terms of the GNU Lesser General Public License as published
 | 
			
		||||
 *   by the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 *   (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 *   MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
 | 
			
		||||
 *   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 | 
			
		||||
 *   PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
 | 
			
		||||
 *   details.
 | 
			
		||||
 *
 | 
			
		||||
 *   You should have received a copy of the GNU Lesser General Public License along
 | 
			
		||||
 *   with MD-Bench.  If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 * =======================================================================================
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <immintrin.h>
 | 
			
		||||
#include <zmmintrin.h>
 | 
			
		||||
 | 
			
		||||
#define MD_SIMD_FLOAT       __m512
 | 
			
		||||
#define MD_SIMD_MASK        __mmask16
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_broadcast(float scalar) { return _mm512_set1_ps(scalar); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_zero() { return _mm512_set1_ps(0.0f); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_add_ps(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_sub_ps(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_mul_ps(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm512_fmadd_ps(a, b, c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm512_rcp14_ps(a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm512_mask_add_ps(a, m, a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask16(a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm512_cmp_ps_mask(a, b, _CMP_LT_OQ); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask16(a); }
 | 
			
		||||
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask16_u32(a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm512_load_ps(p); }
 | 
			
		||||
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm512_store_ps(p, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm512_mask_mov_ps(_mm512_setzero_ps(), m, a); }
 | 
			
		||||
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    // This would only be called in a Mx16 configuration, which is not valid in GROMACS
 | 
			
		||||
    fprintf(stderr, "simd_h_reduce_sum(): Called with AVX512 intrinsics and single-precision which is not valid!\n");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return 0.0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1, MD_SIMD_FLOAT v2, MD_SIMD_FLOAT v3) {
 | 
			
		||||
    // This would only be called in a Mx16 configuration, which is not valid in GROMACS
 | 
			
		||||
    fprintf(stderr, "simd_h_reduce_sum(): Called with AVX512 intrinsics and single-precision which is not valid!\n");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return 0.0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const float* m) {
 | 
			
		||||
    return _mm512_castpd_ps(_mm512_broadcast_f64x4(_mm256_load_pd((const double *)(m))));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_dual(const float* m) {
 | 
			
		||||
    return _mm512_shuffle_f32x4(_mm512_broadcastss_ps(_mm_load_ss(m)), _mm512_broadcastss_ps(_mm_load_ss(m + 1)), 0x44);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(float* m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
 | 
			
		||||
    __m512 t0, t1;
 | 
			
		||||
    __m128 t2, t3;
 | 
			
		||||
 | 
			
		||||
    t0 = _mm512_shuffle_f32x4(v0, v1, 0x88);
 | 
			
		||||
    t1 = _mm512_shuffle_f32x4(v0, v1, 0xdd);
 | 
			
		||||
    t0 = _mm512_add_ps(t0, t1);
 | 
			
		||||
    t0 = _mm512_add_ps(t0, _mm512_permute_ps(t0, 0x4e));
 | 
			
		||||
    t0 = _mm512_add_ps(t0, _mm512_permute_ps(t0, 0xb1));
 | 
			
		||||
    t0 = _mm512_maskz_compress_ps(simd_mask_from_u32(0x1111ul), t0);
 | 
			
		||||
    t3 = _mm512_castps512_ps128(t0);
 | 
			
		||||
    t2 = _mm_load_ps(m);
 | 
			
		||||
    t2 = _mm_add_ps(t2, t3);
 | 
			
		||||
    _mm_store_ps(m, t2);
 | 
			
		||||
 | 
			
		||||
    t3 = _mm_add_ps(t3, _mm_permute_ps(t3, 0x4e));
 | 
			
		||||
    t3 = _mm_add_ps(t3, _mm_permute_ps(t3, 0xb1));
 | 
			
		||||
    return _mm_cvtss_f32(t3);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline void simd_h_decr(MD_FLOAT *m, MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m256 t;
 | 
			
		||||
    a = _mm512_add_ps(a, _mm512_shuffle_f32x4(a, a, 0xee));
 | 
			
		||||
    t = _mm256_load_ps(m);
 | 
			
		||||
    t = _mm256_sub_ps(t, _mm512_castps512_ps256(a));
 | 
			
		||||
    _mm256_store_ps(m, t);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
 | 
			
		||||
    simd_h_decr(m, a0);
 | 
			
		||||
    simd_h_decr(m + CLUSTER_N, a1);
 | 
			
		||||
    simd_h_decr(m + CLUSTER_N * 2, a2);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										145
									
								
								common/includes/simd/avx_avx2_double.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										145
									
								
								common/includes/simd/avx_avx2_double.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,145 @@
 | 
			
		||||
/*
 | 
			
		||||
 * =======================================================================================
 | 
			
		||||
 *
 | 
			
		||||
 *   Author:   Jan Eitzinger (je), jan.eitzinger@fau.de
 | 
			
		||||
 *   Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
 | 
			
		||||
 *
 | 
			
		||||
 *   This file is part of MD-Bench.
 | 
			
		||||
 *
 | 
			
		||||
 *   MD-Bench is free software: you can redistribute it and/or modify it
 | 
			
		||||
 *   under the terms of the GNU Lesser General Public License as published
 | 
			
		||||
 *   by the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 *   (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 *   MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
 | 
			
		||||
 *   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 | 
			
		||||
 *   PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
 | 
			
		||||
 *   details.
 | 
			
		||||
 *
 | 
			
		||||
 *   You should have received a copy of the GNU Lesser General Public License along
 | 
			
		||||
 *   with MD-Bench.  If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 * =======================================================================================
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <immintrin.h>
 | 
			
		||||
 | 
			
		||||
#define MD_SIMD_FLOAT       __m256d
 | 
			
		||||
#define MD_SIMD_INT         __m128i
 | 
			
		||||
 | 
			
		||||
#ifdef MASK_REGISTERS
 | 
			
		||||
#   define MD_SIMD_MASK     __mmask8
 | 
			
		||||
#else
 | 
			
		||||
#   define MD_SIMD_MASK     __m256d
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_pd(scalar); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_pd(0.0); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_pd(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_pd(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_pd(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_pd(p); }
 | 
			
		||||
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm256_store_pd(p, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
 | 
			
		||||
    MD_SIMD_FLOAT ret;
 | 
			
		||||
    fprintf(stderr, "simd_load_h_duplicate(): Not implemented for AVX/AVX2 with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
 | 
			
		||||
    MD_SIMD_FLOAT ret;
 | 
			
		||||
    fprintf(stderr, "simd_load_h_dual(): Not implemented for AVX/AVX2 with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
 | 
			
		||||
    fprintf(stderr, "simd_h_dual_incr_reduced_sum(): Not implemented for AVX/AVX2 with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
    return 0.0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1, MD_SIMD_FLOAT v2, MD_SIMD_FLOAT v3) {
 | 
			
		||||
    __m256d t0, t1, t2;
 | 
			
		||||
    __m128d a0, a1;
 | 
			
		||||
 | 
			
		||||
    t0 = _mm256_hadd_pd(v0, v1);
 | 
			
		||||
    t1 = _mm256_hadd_pd(v2, v3);
 | 
			
		||||
    t2 = _mm256_permute2f128_pd(t0, t1, 0x21);
 | 
			
		||||
    t0 = _mm256_add_pd(t0, t2);
 | 
			
		||||
    t1 = _mm256_add_pd(t1, t2);
 | 
			
		||||
    t0 = _mm256_blend_pd(t0, t1, 0b1100);
 | 
			
		||||
    t1 = _mm256_add_pd(t0, _mm256_load_pd(m));
 | 
			
		||||
    _mm256_store_pd(m, t1);
 | 
			
		||||
 | 
			
		||||
    t0 = _mm256_add_pd(t0, _mm256_permute_pd(t0, 0b0101));
 | 
			
		||||
    a0 = _mm256_castpd256_pd128(t0);
 | 
			
		||||
    a1 = _mm256_extractf128_pd(t0, 0x1);
 | 
			
		||||
    a0 = _mm_add_sd(a0, a1);
 | 
			
		||||
    return *((MD_FLOAT *) &a0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef NO_AVX2
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_and_pd(a, m); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_cvtps_pd(_mm_rcp_ps(_mm256_cvtpd_ps(a))); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return simd_add(simd_mul(a, b), c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return simd_add(a, _mm256_and_pd(b, m)); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd(a, b, _CMP_LT_OQ); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _mm256_and_pd(a, b); }
 | 
			
		||||
// TODO: Initialize all diagonal cases and just select the proper one (all bits set or diagonal) based on cond0
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) {
 | 
			
		||||
    const unsigned long long int all = 0xFFFFFFFFFFFFFFFF;
 | 
			
		||||
    const unsigned long long int none = 0x0;
 | 
			
		||||
    return _mm256_castsi256_pd(_mm256_set_epi64x((a & 0x8) ? all : none, (a & 0x4) ? all : none, (a & 0x2) ? all : none, (a & 0x1) ? all : none));
 | 
			
		||||
}
 | 
			
		||||
// TODO: Implement this, althrough it is just required for debugging
 | 
			
		||||
static inline int simd_mask_to_u32(MD_SIMD_MASK a) { return 0; }
 | 
			
		||||
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m128d a0, a1;
 | 
			
		||||
    a = _mm256_add_pd(a, _mm256_permute_pd(a, 0b0101));
 | 
			
		||||
    a0 = _mm256_castpd256_pd128(a);
 | 
			
		||||
    a1 = _mm256_extractf128_pd(a, 0x1);
 | 
			
		||||
    a0 = _mm_add_sd(a0, a1);
 | 
			
		||||
    return *((MD_FLOAT *) &a0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#else // AVX2
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_mask_mov_pd(_mm256_setzero_pd(), m, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_pd(a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_pd(a, b, c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_pd(a, m, a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_pd_mask(a, b, _CMP_LT_OQ); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
 | 
			
		||||
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
 | 
			
		||||
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m128d a0, a1;
 | 
			
		||||
    // test with shuffle & add as an alternative to hadd later
 | 
			
		||||
    a = _mm256_hadd_pd(a, a);
 | 
			
		||||
    a0 = _mm256_castpd256_pd128(a);
 | 
			
		||||
    a1 = _mm256_extractf128_pd(a, 0x1);
 | 
			
		||||
    a0 = _mm_add_sd(a0, a1);
 | 
			
		||||
    return *((MD_FLOAT *) &a0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
 | 
			
		||||
    fprintf(stderr, "simd_h_decr3(): Not implemented for AVX/AVX2 with double precision!");
 | 
			
		||||
    exit(-1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Functions used in LAMMPS kernel
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_gather(MD_SIMD_INT vidx, const MD_FLOAT *m, int s) { return _mm256_i32gather_pd(m, vidx, s); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_broadcast(int scalar) { return _mm_set1_epi32(scalar); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_zero() { return _mm_setzero_si128(); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_seq() { return _mm_set_epi32(3, 2, 1, 0); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_load(const int *m) { return _mm_load_si128((__m128i const *) m); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_add(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm_add_epi32(a, b); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_mul(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm_mul_epi32(a, b); }
 | 
			
		||||
static inline MD_SIMD_INT simd_int_mask_load(const int *m, MD_SIMD_MASK k) { return simd_int_load(m) & _mm256_cvtpd_epi32(k); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_int_cond_lt(MD_SIMD_INT a, MD_SIMD_INT b) { return _mm256_cvtepi32_pd(_mm_cmplt_epi32(a, b)); }
 | 
			
		||||
							
								
								
									
										101
									
								
								common/includes/simd/avx_avx2_float.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								common/includes/simd/avx_avx2_float.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,101 @@
 | 
			
		||||
/*
 | 
			
		||||
 * =======================================================================================
 | 
			
		||||
 *
 | 
			
		||||
 *   Author:   Jan Eitzinger (je), jan.eitzinger@fau.de
 | 
			
		||||
 *   Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
 | 
			
		||||
 *
 | 
			
		||||
 *   This file is part of MD-Bench.
 | 
			
		||||
 *
 | 
			
		||||
 *   MD-Bench is free software: you can redistribute it and/or modify it
 | 
			
		||||
 *   under the terms of the GNU Lesser General Public License as published
 | 
			
		||||
 *   by the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 *   (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 *   MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
 | 
			
		||||
 *   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 | 
			
		||||
 *   PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
 | 
			
		||||
 *   details.
 | 
			
		||||
 *
 | 
			
		||||
 *   You should have received a copy of the GNU Lesser General Public License along
 | 
			
		||||
 *   with MD-Bench.  If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 * =======================================================================================
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <immintrin.h>
 | 
			
		||||
#include <zmmintrin.h>
 | 
			
		||||
 | 
			
		||||
#define MD_SIMD_FLOAT   __m256
 | 
			
		||||
#define MD_SIMD_MASK    __mmask8
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_broadcast(MD_FLOAT scalar) { return _mm256_set1_ps(scalar); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_zero() { return _mm256_set1_ps(0.0); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_add_ps(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_sub(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_sub_ps(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_mul(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_mul_ps(a, b); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load(MD_FLOAT *p) { return _mm256_load_ps(p); }
 | 
			
		||||
static inline void simd_store(MD_FLOAT *p, MD_SIMD_FLOAT a) { _mm256_store_ps(p, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT select_by_mask(MD_SIMD_FLOAT a, MD_SIMD_MASK m) { return _mm256_mask_mov_ps(_mm256_setzero_ps(), m, a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_reciprocal(MD_SIMD_FLOAT a) { return _mm256_rcp14_ps(a); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_fma(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_FLOAT c) { return _mm256_fmadd_ps(a, b, c); }
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_masked_add(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b, MD_SIMD_MASK m) { return _mm256_mask_add_ps(a, m, a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_cond_lt(MD_SIMD_FLOAT a, MD_SIMD_FLOAT b) { return _mm256_cmp_ps_mask(a, b, _CMP_LT_OQ); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_and(MD_SIMD_MASK a, MD_SIMD_MASK b) { return _kand_mask8(a, b); }
 | 
			
		||||
static inline MD_SIMD_MASK simd_mask_from_u32(unsigned int a) { return _cvtu32_mask8(a); }
 | 
			
		||||
static inline unsigned int simd_mask_to_u32(MD_SIMD_MASK a) { return _cvtmask8_u32(a); }
 | 
			
		||||
static inline MD_FLOAT simd_h_reduce_sum(MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m128 t0;
 | 
			
		||||
    t0 = _mm_add_ps(_mm256_castps256_ps128(a), _mm256_extractf128_ps(a, 0x1));
 | 
			
		||||
    t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
 | 
			
		||||
    t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
 | 
			
		||||
    return *((MD_FLOAT *) &t0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1, MD_SIMD_FLOAT v2, MD_SIMD_FLOAT v3) {
 | 
			
		||||
    __m128 t0, t2;
 | 
			
		||||
    v0 = _mm256_hadd_ps(v0, v1);
 | 
			
		||||
    v2 = _mm256_hadd_ps(v2, v3);
 | 
			
		||||
    v0 = _mm256_hadd_ps(v0, v2);
 | 
			
		||||
    t0 = _mm_add_ps(_mm256_castps256_ps128(v0), _mm256_extractf128_ps(v0, 0x1));
 | 
			
		||||
    t2 = _mm_add_ps(t0, _mm_load_ps(m));
 | 
			
		||||
    _mm_store_ps(m, t2);
 | 
			
		||||
 | 
			
		||||
    t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
 | 
			
		||||
    t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
 | 
			
		||||
    return *((MD_FLOAT *) &t0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_duplicate(const MD_FLOAT *m) {
 | 
			
		||||
    return _mm256_broadcast_ps((const __m128 *)(m));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_SIMD_FLOAT simd_load_h_dual(const MD_FLOAT *m) {
 | 
			
		||||
    __m128 t0, t1;
 | 
			
		||||
    t0 = _mm_broadcast_ss(m);
 | 
			
		||||
    t1 = _mm_broadcast_ss(m + 1);
 | 
			
		||||
    return _mm256_insertf128_ps(_mm256_castps128_ps256(t0), t1, 0x1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline MD_FLOAT simd_h_dual_incr_reduced_sum(MD_FLOAT *m, MD_SIMD_FLOAT v0, MD_SIMD_FLOAT v1) {
 | 
			
		||||
    __m128 t0, t1;
 | 
			
		||||
    v0 = _mm256_hadd_ps(v0, v1);
 | 
			
		||||
    t0 = _mm256_extractf128_ps(v0, 0x1);
 | 
			
		||||
    t0 = _mm_hadd_ps(_mm256_castps256_ps128(v0), t0);
 | 
			
		||||
    t0 = _mm_permute_ps(t0, _MM_SHUFFLE(3, 1, 2, 0));
 | 
			
		||||
    t1 = _mm_add_ps(t0, _mm_load_ps(m));
 | 
			
		||||
    _mm_store_ps(m, t1);
 | 
			
		||||
 | 
			
		||||
    t0 = _mm_add_ps(t0, _mm_permute_ps(t0, _MM_SHUFFLE(1, 0, 3, 2)));
 | 
			
		||||
    t0 = _mm_add_ss(t0, _mm_permute_ps(t0, _MM_SHUFFLE(0, 3, 2, 1)));
 | 
			
		||||
    return *((MD_FLOAT *) &t0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline void simd_h_decr(MD_FLOAT *m, MD_SIMD_FLOAT a) {
 | 
			
		||||
    __m128 asum = _mm_add_ps(_mm256_castps256_ps128(a), _mm256_extractf128_ps(a, 0x1));
 | 
			
		||||
    _mm_store_ps(m, _mm_sub_ps(_mm_load_ps(m), asum));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void simd_h_decr3(MD_FLOAT *m, MD_SIMD_FLOAT a0, MD_SIMD_FLOAT a1, MD_SIMD_FLOAT a2) {
 | 
			
		||||
    simd_h_decr(m, a0);
 | 
			
		||||
    simd_h_decr(m + CLUSTER_N, a1);
 | 
			
		||||
    simd_h_decr(m + CLUSTER_N * 2, a2);
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user