Neighbor list preparation

This commit is contained in:
Andropov Arsenii 2023-05-09 00:44:37 +02:00
parent ee3f6de050
commit 182c065fe2
11 changed files with 240 additions and 40 deletions

View File

@ -13,7 +13,7 @@ DATA_LAYOUT ?= AOS
# Assembly syntax to generate (ATT/INTEL) # Assembly syntax to generate (ATT/INTEL)
ASM_SYNTAX ?= ATT ASM_SYNTAX ?= ATT
# Debug # Debug
DEBUG ?= false DEBUG ?= true
# Explicitly store and load atom types (true or false) # Explicitly store and load atom types (true or false)
EXPLICIT_TYPES ?= false EXPLICIT_TYPES ?= false

View File

@ -452,12 +452,5 @@ void growSuperClusters(Atom *atom) {
atom->scl_x = (MD_FLOAT*) reallocate(atom->scl_x, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT), nold * SCLUSTER_M * 3 * sizeof(MD_FLOAT)); atom->scl_x = (MD_FLOAT*) reallocate(atom->scl_x, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT), nold * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
atom->scl_f = (MD_FLOAT*) reallocate(atom->scl_f, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT), nold * SCLUSTER_M * 3 * sizeof(MD_FLOAT)); atom->scl_f = (MD_FLOAT*) reallocate(atom->scl_f, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT), nold * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
atom->scl_v = (MD_FLOAT*) reallocate(atom->scl_v, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT), nold * SCLUSTER_M * 3 * sizeof(MD_FLOAT)); atom->scl_v = (MD_FLOAT*) reallocate(atom->scl_v, ALIGNMENT, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT), nold * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
/*
for (int sci = 0; sci < atom->Nsclusters_max; sci++) {
atom->siclusters[sci].iclusters = (int*) reallocate(atom->siclusters[sci].iclusters, ALIGNMENT, SCLUSTER_SIZE * sizeof(int), SCLUSTER_SIZE * sizeof(int));
}
*/
} }
#endif //USE_SUPER_CLUSTERS #endif //USE_SUPER_CLUSTERS

View File

@ -154,11 +154,11 @@ void copyDataFromCUDADevice(Atom *atom) {
memcpyFromGPU(atom->cl_f, cuda_cl_f, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT)); memcpyFromGPU(atom->cl_f, cuda_cl_f, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT));
#ifdef USE_SUPER_CLUSTERS #ifdef USE_SUPER_CLUSTERS
alignDataFromSuperclusters(atom);
memcpyFromGPU(atom->scl_x, cuda_scl_x, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT)); memcpyFromGPU(atom->scl_x, cuda_scl_x, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
memcpyFromGPU(atom->scl_v, cuda_scl_v, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT)); memcpyFromGPU(atom->scl_v, cuda_scl_v, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
memcpyFromGPU(atom->scl_f, cuda_scl_f, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT)); memcpyFromGPU(atom->scl_f, cuda_scl_f, atom->Nsclusters_max * SCLUSTER_M * 3 * sizeof(MD_FLOAT));
alignDataFromSuperclusters(atom);
#endif //USE_SUPER_CLUSTERS #endif //USE_SUPER_CLUSTERS
DEBUG_MESSAGE("copyDataFromCUDADevice stop\r\n"); DEBUG_MESSAGE("copyDataFromCUDADevice stop\r\n");
@ -241,6 +241,39 @@ __global__ void cudaUpdatePbc_warp(MD_FLOAT *cuda_cl_x, int *cuda_border_map,
} }
} }
__global__ void cudaUpdatePbcSup_warp(MD_FLOAT *cuda_cl_x, int *cuda_border_map,
int *cuda_jclusters_natoms,
int *cuda_PBCx,
int *cuda_PBCy,
int *cuda_PBCz,
int Nsclusters_local,
int Nclusters_ghost,
MD_FLOAT param_xprd,
MD_FLOAT param_yprd,
MD_FLOAT param_zprd) {
unsigned int cg = blockDim.x * blockIdx.x + threadIdx.x;
if (cg >= Nclusters_ghost) return;
//int jfac = MAX(1, CLUSTER_N / CLUSTER_M);
int jfac = SCLUSTER_SIZE / CLUSTER_M;
int ncj = Nsclusters_local / jfac;
MD_FLOAT xprd = param_xprd;
MD_FLOAT yprd = param_yprd;
MD_FLOAT zprd = param_zprd;
const int cj = ncj + cg;
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
int bmap_vec_base = CJ_VECTOR_BASE_INDEX(cuda_border_map[cg]);
MD_FLOAT *cj_x = &cuda_cl_x[cj_vec_base];
MD_FLOAT *bmap_x = &cuda_cl_x[bmap_vec_base];
for(int cjj = 0; cjj < cuda_jclusters_natoms[cg]; cjj++) {
cj_x[CL_X_OFFSET + cjj] = bmap_x[CL_X_OFFSET + cjj] + cuda_PBCx[cg] * xprd;
cj_x[CL_Y_OFFSET + cjj] = bmap_x[CL_Y_OFFSET + cjj] + cuda_PBCy[cg] * yprd;
cj_x[CL_Z_OFFSET + cjj] = bmap_x[CL_Z_OFFSET + cjj] + cuda_PBCz[cg] * zprd;
}
}
__global__ void computeForceLJ_cuda_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_cl_f, __global__ void computeForceLJ_cuda_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_cl_f,
int Nclusters_local, int Nclusters_max, int Nclusters_local, int Nclusters_max,
int *cuda_numneigh, int *cuda_neighs, int half_neigh, int maxneighs, int *cuda_numneigh, int *cuda_neighs, int half_neigh, int maxneighs,
@ -348,11 +381,19 @@ extern "C"
void cudaUpdatePbc(Atom *atom, Parameter *param) { void cudaUpdatePbc(Atom *atom, Parameter *param) {
const int threads_num = 512; const int threads_num = 512;
dim3 block_size = dim3(threads_num, 1, 1);; dim3 block_size = dim3(threads_num, 1, 1);;
dim3 grid_size = dim3(atom->Nclusters_ghost/(threads_num)+1, 1, 1);; dim3 grid_size = dim3(atom->Nclusters_ghost/(threads_num)+1, 1, 1);
#ifdef USE_SUPER_CLUSTERS
cudaUpdatePbcSup_warp<<<grid_size, block_size>>>(cuda_scl_x, cuda_border_map,
cuda_jclusters_natoms, cuda_PBCx, cuda_PBCy, cuda_PBCz,
atom->Nclusters_local, atom->Nclusters_ghost,
param->xprd, param->yprd, param->zprd);
#else
cudaUpdatePbc_warp<<<grid_size, block_size>>>(cuda_cl_x, cuda_border_map, cudaUpdatePbc_warp<<<grid_size, block_size>>>(cuda_cl_x, cuda_border_map,
cuda_jclusters_natoms, cuda_PBCx, cuda_PBCy, cuda_PBCz, cuda_jclusters_natoms, cuda_PBCx, cuda_PBCy, cuda_PBCz,
atom->Nclusters_local, atom->Nclusters_ghost, atom->Nclusters_local, atom->Nclusters_ghost,
param->xprd, param->yprd, param->zprd); param->xprd, param->yprd, param->zprd);
#endif //USE_SUPER_CLUSTERS
cuda_assert("cudaUpdatePbc", cudaPeekAtLastError()); cuda_assert("cudaUpdatePbc", cudaPeekAtLastError());
cuda_assert("cudaUpdatePbc", cudaDeviceSynchronize()); cuda_assert("cudaUpdatePbc", cudaDeviceSynchronize());
} }

View File

@ -193,9 +193,11 @@ __global__ void computeForceLJSup_cuda_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_
int numneighs = cuda_numneigh[cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos]]; int numneighs = cuda_numneigh[cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos]];
for(int k = 0; k < numneighs; k++) { for(int k = 0; k < numneighs; k++) {
int cj = (&cuda_neighs[cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos] * maxneighs])[k]; int glob_j = (&cuda_neighs[cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos] * maxneighs])[k];
int scj = glob_j / SCLUSTER_SIZE;
// TODO Make cj accessible from super cluster data alignment (not reachable right now) // TODO Make cj accessible from super cluster data alignment (not reachable right now)
int cj_vec_base = SCJ_VECTOR_BASE_INDEX(cj); int cj = SCJ_VECTOR_BASE_INDEX(scj) + CLUSTER_M * (glob_j % SCLUSTER_SIZE);
int cj_vec_base = cj;
MD_FLOAT *cj_x = &cuda_cl_x[cj_vec_base]; MD_FLOAT *cj_x = &cuda_cl_x[cj_vec_base];
MD_FLOAT *cj_f = &cuda_cl_f[cj_vec_base]; MD_FLOAT *cj_f = &cuda_cl_f[cj_vec_base];
@ -206,14 +208,10 @@ __global__ void computeForceLJSup_cuda_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_
MD_FLOAT fiy = 0; MD_FLOAT fiy = 0;
MD_FLOAT fiz = 0; MD_FLOAT fiz = 0;
int cond;
#if CLUSTER_M == CLUSTER_N //int cond = ci_cj0 != cj || cii_pos != cjj_pos || scj != sci_pos;
cond = half_neigh ? (ci_cj0 != cj || cii_pos < cjj_pos) : int cond = (glob_j != cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos] && cii_pos != cjj_pos);
(ci_cj0 != cj || cii_pos != cjj_pos);
#elif CLUSTER_M < CLUSTER_N
cond = half_neigh ? (ci_cj0 != cj || cii_pos + CLUSTER_M * (ci_pos & 0x1) < cjj_pos) :
(ci_cj0 != cj || cii_pos + CLUSTER_M * (ci_pos & 0x1) != cjj_pos);
#endif
if(cond) { if(cond) {
MD_FLOAT delx = xtmp - cj_x[SCL_CL_X_OFFSET(ci_pos) + cjj_pos]; MD_FLOAT delx = xtmp - cj_x[SCL_CL_X_OFFSET(ci_pos) + cjj_pos];
MD_FLOAT dely = ytmp - cj_x[SCL_CL_Y_OFFSET(ci_pos) + cjj_pos]; MD_FLOAT dely = ytmp - cj_x[SCL_CL_Y_OFFSET(ci_pos) + cjj_pos];

View File

@ -149,7 +149,6 @@ typedef struct {
} Cluster; } Cluster;
typedef struct { typedef struct {
//int *iclusters;
int nclusters; int nclusters;
MD_FLOAT bbminx, bbmaxx; MD_FLOAT bbminx, bbmaxx;
MD_FLOAT bbminy, bbmaxy; MD_FLOAT bbminy, bbmaxy;

View File

@ -16,5 +16,8 @@ extern void setupPbc(Atom*, Parameter*);
#ifdef CUDA_TARGET #ifdef CUDA_TARGET
extern void cudaUpdatePbc(Atom*, Parameter*, int); extern void cudaUpdatePbc(Atom*, Parameter*, int);
#if defined(USE_SUPER_CLUSTERS)
extern void setupPbcGPU(Atom*, Parameter*);
#endif //defined(USE_SUPER_CLUSTERS)
#endif #endif
#endif #endif

View File

@ -6,12 +6,14 @@
#define MD_BENCH_UTILS_H #define MD_BENCH_UTILS_H
#include <atom.h> #include <atom.h>
#include <neighbor.h>
#ifdef USE_SUPER_CLUSTERS #ifdef USE_SUPER_CLUSTERS
void verifyClusters(Atom *atom); void verifyClusters(Atom *atom);
void verifyLayout(Atom *atom); void verifyLayout(Atom *atom);
void checkAlignment(Atom *atom); void checkAlignment(Atom *atom);
void showSuperclusters(Atom *atom); void showSuperclusters(Atom *atom);
void printNeighs(Atom *atom, Neighbor *neighbor);
#endif //USE_SUPER_CLUSTERS #endif //USE_SUPER_CLUSTERS
#endif //MD_BENCH_UTILS_H #endif //MD_BENCH_UTILS_H

View File

@ -77,7 +77,12 @@ double setup(Parameter *param, Eam *eam, Atom *atom, Neighbor *neighbor, Stats *
buildClusters(atom); buildClusters(atom);
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS) #endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
defineJClusters(atom); defineJClusters(atom);
#if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
//setupPbcGPU(atom, param);
setupPbc(atom, param); setupPbc(atom, param);
#else
setupPbc(atom, param);
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
binClusters(atom); binClusters(atom);
#if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS) #if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
buildNeighborGPU(atom, neighbor); buildNeighborGPU(atom, neighbor);
@ -101,7 +106,12 @@ double reneighbour(Parameter *param, Atom *atom, Neighbor *neighbor) {
buildClusters(atom); buildClusters(atom);
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS) #endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
defineJClusters(atom); defineJClusters(atom);
#if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
//setupPbcGPU(atom, param);
setupPbc(atom, param); setupPbc(atom, param);
#else
setupPbc(atom, param);
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
binClusters(atom); binClusters(atom);
#if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS) #if defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
buildNeighborGPU(atom, neighbor); buildNeighborGPU(atom, neighbor);
@ -234,6 +244,8 @@ int main(int argc, char** argv) {
printParameter(&param); printParameter(&param);
printf(HLINE); printf(HLINE);
//verifyNeigh(&atom, &neighbor);
printf("step\ttemp\t\tpressure\n"); printf("step\ttemp\t\tpressure\n");
computeThermo(0, &param, &atom); computeThermo(0, &param, &atom);
#if defined(MEM_TRACER) || defined(INDEX_TRACER) #if defined(MEM_TRACER) || defined(INDEX_TRACER)
@ -276,7 +288,10 @@ int main(int argc, char** argv) {
#endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS) #endif //defined(CUDA_TARGET) && defined(USE_SUPER_CLUSTERS)
} }
copyDataFromCUDADevice(&atom);
updatePbc(&atom, &param, 0); updatePbc(&atom, &param, 0);
copyDataToCUDADevice(&atom);
} else { } else {
#ifdef CUDA_TARGET #ifdef CUDA_TARGET
copyDataFromCUDADevice(&atom); copyDataFromCUDADevice(&atom);
@ -294,14 +309,34 @@ int main(int argc, char** argv) {
traceAddresses(&param, &atom, &neighbor, n + 1); traceAddresses(&param, &atom, &neighbor, n + 1);
#endif #endif
/*
printf("%d\t%d\r\n", atom.Nsclusters_local, atom.Nclusters_local);
copyDataToCUDADevice(&atom);
verifyLayout(&atom);
//printClusterIndices(&atom);
*/
if(param.force_field == FF_EAM) { if(param.force_field == FF_EAM) {
timer[FORCE] += computeForceEam(&eam, &param, &atom, &neighbor, &stats); timer[FORCE] += computeForceEam(&eam, &param, &atom, &neighbor, &stats);
} else { } else {
timer[FORCE] += computeForceLJ(&param, &atom, &neighbor, &stats); timer[FORCE] += computeForceLJ(&param, &atom, &neighbor, &stats);
} }
/*
copyDataFromCUDADevice(&atom);
verifyLayout(&atom);
getchar();
*/
finalIntegrate(&param, &atom); finalIntegrate(&param, &atom);
if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) { if(!((n + 1) % param.nstat) && (n+1) < param.ntimes) {
computeThermo(n + 1, &param, &atom); computeThermo(n + 1, &param, &atom);
} }

View File

@ -395,11 +395,11 @@ void buildNeighborGPU(Atom *atom, Neighbor *neighbor) {
int new_maxneighs = neighbor->maxneighs; int new_maxneighs = neighbor->maxneighs;
resize = 0; resize = 0;
//for (int sci = 0; sci < atom->Nsclusters_local; sci++) { for (int sci = 0; sci < atom->Nsclusters_local; sci++) {
//for (int scii = 0; scii < atom->siclusters[sci].nclusters; scii++) { for (int scii = 0; scii < atom->siclusters[sci].nclusters; scii++) {
for(int ci = 0; ci < atom->Nclusters_local; ci++) { //for(int ci = 0; ci < atom->Nclusters_local; ci++) {
//const int ci = atom->siclusters[sci].iclusters[scii]; //const int ci = atom->siclusters[sci].iclusters[scii];
//const int ci = atom->icluster_idx[SCLUSTER_SIZE * sci + scii]; const int ci = atom->icluster_idx[SCLUSTER_SIZE * sci + scii];
int ci_cj1 = CJ1_FROM_CI(ci); int ci_cj1 = CJ1_FROM_CI(ci);
int *neighptr = &(neighbor->neighbors[ci * neighbor->maxneighs]); int *neighptr = &(neighbor->neighbors[ci * neighbor->maxneighs]);
//int *neighptr = &(neighbor->neighbors[sci * neighbor->maxneighs]); //int *neighptr = &(neighbor->neighbors[sci * neighbor->maxneighs]);
@ -504,7 +504,7 @@ void buildNeighborGPU(Atom *atom, Neighbor *neighbor) {
} }
} }
} }
//} }
if(resize) { if(resize) {
fprintf(stdout, "RESIZE %d\n", neighbor->maxneighs); fprintf(stdout, "RESIZE %d\n", neighbor->maxneighs);
@ -898,10 +898,7 @@ void buildClustersGPU(Atom *atom) {
int n_super_clusters = n_super_clusters_xy / SCLUSTER_SIZE_Z; int n_super_clusters = n_super_clusters_xy / SCLUSTER_SIZE_Z;
if (n_super_clusters_xy % SCLUSTER_SIZE_Z) n_super_clusters++; if (n_super_clusters_xy % SCLUSTER_SIZE_Z) n_super_clusters++;
//printf("%d\t%d\t%d\t%d\r\n", nclusters, n_super_clusters_xy, n_super_clusters, (SCLUSTER_SIZE_X * SCLUSTER_SIZE_Y * SCLUSTER_SIZE_Z)*n_super_clusters);
int cl_count = 0; int cl_count = 0;
for (int scl = 0; scl < n_super_clusters; scl++) { for (int scl = 0; scl < n_super_clusters; scl++) {
const int sci = atom->Nsclusters_local; const int sci = atom->Nsclusters_local;
if(sci >= atom->Nsclusters_max) { if(sci >= atom->Nsclusters_max) {
@ -928,8 +925,6 @@ void buildClustersGPU(Atom *atom) {
sortAtomsByCoord(atom, YY, bin, atom_scl_z_offset, atom_scl_z_end_idx); sortAtomsByCoord(atom, YY, bin, atom_scl_z_offset, atom_scl_z_end_idx);
//printf("%d\t%d\t%d\t%d\t%d\t%d\r\n", nclusters, scl, scl_z, atom_scl_z_offset, atom_scl_z_end_idx, c);
for (int scl_y = 0; scl_y < SCLUSTER_SIZE_Y; scl_y++) { for (int scl_y = 0; scl_y < SCLUSTER_SIZE_Y; scl_y++) {
if (cl_count >= nclusters) break; if (cl_count >= nclusters) break;
@ -941,11 +936,8 @@ void buildClustersGPU(Atom *atom) {
const int atom_scl_y_end_idx = MIN(atom_scl_y_offset + const int atom_scl_y_end_idx = MIN(atom_scl_y_offset +
SCLUSTER_SIZE_X * CLUSTER_M - 1, c - 1); SCLUSTER_SIZE_X * CLUSTER_M - 1, c - 1);
//printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\r\n", nclusters, scl, scl_z, scl_y, atom_scl_y_offset, atom_scl_y_end_idx, c);
sortAtomsByCoord(atom, XX, bin, atom_scl_y_offset, atom_scl_y_end_idx); sortAtomsByCoord(atom, XX, bin, atom_scl_y_offset, atom_scl_y_end_idx);
for (int scl_x = 0; scl_x < SCLUSTER_SIZE_X; scl_x++) { for (int scl_x = 0; scl_x < SCLUSTER_SIZE_X; scl_x++) {
if (cl_count >= nclusters) break; if (cl_count >= nclusters) break;
cl_count++; cl_count++;
@ -1035,9 +1027,6 @@ void buildClustersGPU(Atom *atom) {
atom->siclusters[sci].bbmaxz = sc_bbmaxz; atom->siclusters[sci].bbmaxz = sc_bbmaxz;
atom->Nsclusters_local++; atom->Nsclusters_local++;
} }
//printf("%d\t%d\r\n", (SCLUSTER_SIZE_X * SCLUSTER_SIZE_Y * SCLUSTER_SIZE_Z)*n_super_clusters, count);
} }
DEBUG_MESSAGE("buildClustersGPU end\n"); DEBUG_MESSAGE("buildClustersGPU end\n");

View File

@ -229,3 +229,88 @@ void setupPbc(Atom *atom, Parameter *param) {
cpuUpdatePbc(atom, param, 1); cpuUpdatePbc(atom, param, 1);
DEBUG_MESSAGE("setupPbc end\n"); DEBUG_MESSAGE("setupPbc end\n");
} }
void setupPbcGPU(Atom *atom, Parameter *param) {
DEBUG_MESSAGE("setupPbcGPU start\n");
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
MD_FLOAT Cutneigh = param->cutneigh;
int jfac = SCLUSTER_SIZE / CLUSTER_M;
int ncj = atom->Nsclusters_local * jfac;
int Nghost = -1;
int Nghost_atoms = 0;
for(int cj = 0; cj < ncj; cj++) {
if(atom->jclusters[cj].natoms > 0) {
if(atom->Nsclusters_local + (Nghost + (jfac - 1) + 7) / jfac >= atom->Nclusters_max) {
growClusters(atom);
}
if((Nghost + 7) * CLUSTER_M >= NmaxGhost) {
growPbc(atom);
}
MD_FLOAT bbminx = atom->jclusters[cj].bbminx;
MD_FLOAT bbmaxx = atom->jclusters[cj].bbmaxx;
MD_FLOAT bbminy = atom->jclusters[cj].bbminy;
MD_FLOAT bbmaxy = atom->jclusters[cj].bbmaxy;
MD_FLOAT bbminz = atom->jclusters[cj].bbminz;
MD_FLOAT bbmaxz = atom->jclusters[cj].bbmaxz;
/* Setup ghost atoms */
/* 6 planes */
if (bbminx < Cutneigh) { ADDGHOST(+1,0,0); }
if (bbmaxx >= (xprd-Cutneigh)) { ADDGHOST(-1,0,0); }
if (bbminy < Cutneigh) { ADDGHOST(0,+1,0); }
if (bbmaxy >= (yprd-Cutneigh)) { ADDGHOST(0,-1,0); }
if (bbminz < Cutneigh) { ADDGHOST(0,0,+1); }
if (bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(0,0,-1); }
/* 8 corners */
if (bbminx < Cutneigh && bbminy < Cutneigh && bbminz < Cutneigh) { ADDGHOST(+1,+1,+1); }
if (bbminx < Cutneigh && bbmaxy >= (yprd-Cutneigh) && bbminz < Cutneigh) { ADDGHOST(+1,-1,+1); }
if (bbminx < Cutneigh && bbminy < Cutneigh && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(+1,+1,-1); }
if (bbminx < Cutneigh && bbmaxy >= (yprd-Cutneigh) && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(+1,-1,-1); }
if (bbmaxx >= (xprd-Cutneigh) && bbminy < Cutneigh && bbminz < Cutneigh) { ADDGHOST(-1,+1,+1); }
if (bbmaxx >= (xprd-Cutneigh) && bbmaxy >= (yprd-Cutneigh) && bbminz < Cutneigh) { ADDGHOST(-1,-1,+1); }
if (bbmaxx >= (xprd-Cutneigh) && bbminy < Cutneigh && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(-1,+1,-1); }
if (bbmaxx >= (xprd-Cutneigh) && bbmaxy >= (yprd-Cutneigh) && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(-1,-1,-1); }
/* 12 edges */
if (bbminx < Cutneigh && bbminz < Cutneigh) { ADDGHOST(+1,0,+1); }
if (bbminx < Cutneigh && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(+1,0,-1); }
if (bbmaxx >= (xprd-Cutneigh) && bbminz < Cutneigh) { ADDGHOST(-1,0,+1); }
if (bbmaxx >= (xprd-Cutneigh) && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(-1,0,-1); }
if (bbminy < Cutneigh && bbminz < Cutneigh) { ADDGHOST(0,+1,+1); }
if (bbminy < Cutneigh && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(0,+1,-1); }
if (bbmaxy >= (yprd-Cutneigh) && bbminz < Cutneigh) { ADDGHOST(0,-1,+1); }
if (bbmaxy >= (yprd-Cutneigh) && bbmaxz >= (zprd-Cutneigh)) { ADDGHOST(0,-1,-1); }
if (bbminy < Cutneigh && bbminx < Cutneigh) { ADDGHOST(+1,+1,0); }
if (bbminy < Cutneigh && bbmaxx >= (xprd-Cutneigh)) { ADDGHOST(-1,+1,0); }
if (bbmaxy >= (yprd-Cutneigh) && bbminx < Cutneigh) { ADDGHOST(+1,-1,0); }
if (bbmaxy >= (yprd-Cutneigh) && bbmaxx >= (xprd-Cutneigh)) { ADDGHOST(-1,-1,0); }
}
}
if(ncj + (Nghost + (jfac - 1) + 1) / jfac >= atom->Nclusters_max) {
growClusters(atom);
}
// Add dummy cluster at the end
int cj_vec_base = CJ_VECTOR_BASE_INDEX(ncj + Nghost + 1);
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
for(int cjj = 0; cjj < CLUSTER_N; cjj++) {
cj_x[CL_X_OFFSET + cjj] = INFINITY;
cj_x[CL_Y_OFFSET + cjj] = INFINITY;
cj_x[CL_Z_OFFSET + cjj] = INFINITY;
}
// increase by one to make it the ghost atom count
atom->dummy_cj = ncj + Nghost + 1;
atom->Nghost = Nghost_atoms;
atom->Nclusters_ghost = Nghost + 1;
atom->Nclusters = atom->Nclusters_local + Nghost + 1;
// Update created ghost clusters positions
cudaUpdatePbc(atom, param, 1);
DEBUG_MESSAGE("setupPbcGPU end\n");
}

View File

@ -4,7 +4,7 @@
*/ */
#include <stdio.h> #include <stdio.h>
#include <stdlib.h>
#include <utils.h> #include <utils.h>
extern void alignDataToSuperclusters(Atom *atom); extern void alignDataToSuperclusters(Atom *atom);
@ -274,4 +274,59 @@ void showSuperclusters(Atom *atom) {
} }
} }
void printNeighs(Atom *atom, Neighbor *neighbor) {
for (int i = 0; i < atom->Nclusters_local; ++i) {
int neigh_num = neighbor->numneigh[i];
for (int j = 0; j < neigh_num; j++) {
printf("%d ", neighbor->neighbors[ i * neighbor->maxneighs + j]);
}
printf("\r\n");
}
}
void printClusterIndices(Atom *atom) {
for (int i = 0; i < atom->Nsclusters_local; ++i) {
int clusters_num = atom->siclusters[i].nclusters;
for (int j = 0; j < clusters_num; j++) {
printf("%d ", atom->icluster_idx[j + SCLUSTER_SIZE * i]);
}
printf("\r\n");
}
}
void verifyNeigh(Atom *atom, Neighbor *neighbor) {
buildNeighbor(atom, neighbor);
int *numneigh = (int*) malloc(atom->Nclusters_local * sizeof(int));
int *neighbors = (int*) malloc(atom->Nclusters_local * neighbor->maxneighs * sizeof(int*));
for (int i = 0; i < atom->Nclusters_local; ++i) {
int neigh_num = neighbor->numneigh[i];
numneigh[i] = neighbor->numneigh[i];
neighbor->numneigh[i] = 0;
for (int j = 0; j < neigh_num; j++) {
neighbors[i * neighbor->maxneighs + j] = neighbor->neighbors[i * neighbor->maxneighs + j];
neighbor->neighbors[i * neighbor->maxneighs + j] = 0;
}
}
buildNeighborGPU(atom, neighbor);
unsigned int num_diff = 0;
unsigned int neigh_diff = 0;
for (int i = 0; i < atom->Nclusters_local; ++i) {
int neigh_num = neighbor->numneigh[i];
if (numneigh[i] != neigh_num) num_diff++;
for (int j = 0; j < neigh_num; j++) {
if (neighbors[i * neighbor->maxneighs + j] !=
neighbor->neighbors[ i * neighbor->maxneighs + j]) neigh_diff++;
}
}
printf("%d\t%d\r\n", num_diff, neigh_diff);
}
#endif //USE_SUPER_CLUSTERS #endif //USE_SUPER_CLUSTERS