Sum results after cuda function executed

This commit is contained in:
Maximilian Gaul 2021-11-10 16:02:05 +01:00
parent 3f7fb7f22a
commit 0f5fdd3708

View File

@ -22,7 +22,10 @@
*/ */
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <stddef.h>
#include <cuda_runtime.h> #include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <likwid-marker.h> #include <likwid-marker.h>
#include <timing.h> #include <timing.h>
@ -30,6 +33,42 @@
#include <parameter.h> #include <parameter.h>
#include <atom.h> #include <atom.h>
// cuda kernel
__global__ void calc_force(
Atom *atom,
MD_FLOAT xtmp, MD_FLOAT ytmp, MD_FLOAT ztmp,
MD_FLOAT *fix, MD_FLOAT *fiy, MD_FLOAT *fiz,
int i, int numneighs, int *neighs) {
// Calculate idx k from thread information
const long long k = blockIdx.x * blockDim.x + threadIdx.x;
if( k >= numneighs ) {
return;
}
int j = neighs[k];
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
const int type_i = atom->type[i];
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
const MD_FLOAT sigma6 = atom->sigma6[type_ij];
const MD_FLOAT epsilon = atom->epsilon[type_ij];
if(rsq < cutforcesq) {
MD_FLOAT sr2 = 1.0 / rsq;
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
fix[j] = delx * force;
fiy[j] = dely * force;
fiz[j] = delz * force;
}
}
double computeForce( double computeForce(
Parameter *param, Parameter *param,
Atom *atom, Atom *atom,
@ -110,41 +149,36 @@ double computeForce(
cudaMalloc((void**)&c_neighs, sizeof(int) * numneighs); cudaMalloc((void**)&c_neighs, sizeof(int) * numneighs);
cudaMemcpy(c_neighs, neighs, sizeof(int) * numneighs, cudaMemcpyHostToDevice); cudaMemcpy(c_neighs, neighs, sizeof(int) * numneighs, cudaMemcpyHostToDevice);
const int num_elems = numneighs;
MD_FLOAT *c_fix, *c_fiy, *c_fiz; MD_FLOAT *c_fix, *c_fiy, *c_fiz;
cudaMalloc((void**)&c_fix, sizeof(MD_FLOAT) * num_elems); cudaMalloc((void**)&c_fix, sizeof(MD_FLOAT) * numneighs);
cudaMalloc((void**)&c_fiy, sizeof(MD_FLOAT) * num_elems); cudaMalloc((void**)&c_fiy, sizeof(MD_FLOAT) * numneighs);
cudaMalloc((void**)&c_fiz, sizeof(MD_FLOAT) * num_elems); cudaMalloc((void**)&c_fiz, sizeof(MD_FLOAT) * numneighs);
const int num_blocks = 64;
const int num_threads_per_block = numneighs / num_blocks;
printf("numneighs: %d => num-blocks: %d, num_threads => %d\r\n", numneighs, num_blocks, num_threads_per_block);
// launch cuda kernel
calc_force <<< num_blocks, num_threads_per_block >>> (c_atom, xtmp, ytmp, ztmp, c_fix, c_fiy, c_fiz, i, numneighs, c_neighs);
cudaDeviceSynchronize();
// sum result
MD_FLOAT *d_fix, *d_fiy, *d_fiz;
d_fix = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
d_fiy = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
d_fiz = (MD_FLOAT*)malloc(sizeof(MD_FLOAT) * numneighs);
cudaMemcpy((void**)d_fix, c_fix, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost);
cudaMemcpy((void**)d_fiy, c_fiy, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost);
cudaMemcpy((void**)d_fiz, c_fiz, sizeof(MD_FLOAT) * numneighs, cudaMemcpyDeviceToHost);
for(int k = 0; k < numneighs; k++) { for(int k = 0; k < numneighs; k++) {
int j = neighs[k]; fx[i] += d_fix[k];
MD_FLOAT delx = xtmp - atom_x(j); fy[i] += d_fiy[k];
MD_FLOAT dely = ytmp - atom_y(j); fz[i] += d_fiz[k];
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
const MD_FLOAT sigma6 = atom->sigma6[type_ij];
const MD_FLOAT epsilon = atom->epsilon[type_ij];
#endif
if(rsq < cutforcesq) {
MD_FLOAT sr2 = 1.0 / rsq;
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
fix += delx * force;
fiy += dely * force;
fiz += delz * force;
}
} }
fx[i] += fix; cudaFree(c_fix); cudaFree(c_fiy); cudaFree(c_fiz);
fy[i] += fiy; cudaFree(c_atom); cudaFree(c_neighs);
fz[i] += fiz;
} }
LIKWID_MARKER_STOP("force"); LIKWID_MARKER_STOP("force");
@ -152,33 +186,3 @@ double computeForce(
return E-S; return E-S;
} }
// cuda kernel
__global__ void calc_force(
Atom *atom,
MD_FLOAT xtmp, MD_FLOAT ytmp, MD_FLOAT ztmp,
MD_FLOAT *fix, MD_FLOAT *fiy, MD_FLOAT *fiz,
int i, int k, int *neighs) {
int j = neighs[k];
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
const int type_i = atom->type[i];
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
const MD_FLOAT sigma6 = atom->sigma6[type_ij];
const MD_FLOAT epsilon = atom->epsilon[type_ij];
if(rsq < cutforcesq) {
MD_FLOAT sr2 = 1.0 / rsq;
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
fix[j] += delx * force;
fiy[j] += dely * force;
fiz[j] += delz * force;
}
}