Only malloc once at the beginning plus measurement csv

This commit is contained in:
Maximilian Gaul 2021-12-25 13:52:33 +01:00
parent 134e3f4b78
commit 0ea0587442
2 changed files with 33 additions and 37 deletions

View File

@ -98,7 +98,11 @@ __global__ void calc_force(
extern "C" { extern "C" {
bool initialized = false;
Atom c_atom;
double computeForce( double computeForce(
bool reneighbourHappenend,
Parameter *param, Parameter *param,
Atom *atom, Atom *atom,
Neighbor *neighbor Neighbor *neighbor
@ -125,12 +129,11 @@ double computeForce(
const char *num_threads_env = getenv("NUM_THREADS"); const char *num_threads_env = getenv("NUM_THREADS");
int num_threads = 0; int num_threads = 0;
if(num_threads_env == nullptr) if(num_threads_env == nullptr)
num_threads = 2; num_threads = 32;
else { else {
num_threads = atoi(num_threads_env); num_threads = atoi(num_threads_env);
} }
Atom c_atom;
c_atom.Natoms = atom->Natoms; c_atom.Natoms = atom->Natoms;
c_atom.Nlocal = atom->Nlocal; c_atom.Nlocal = atom->Nlocal;
c_atom.Nghost = atom->Nghost; c_atom.Nghost = atom->Nghost;
@ -140,67 +143,55 @@ double computeForce(
/* /*
int nDevices; int nDevices;
cudaGetDeviceCount(&nDevices); cudaGetDeviceCount(&nDevices);
size_t free, total;
for(int i = 0; i < nDevices; ++i) { for(int i = 0; i < nDevices; ++i) {
cudaMemGetInfo( &free, &total );
cudaDeviceProp prop; cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, i); cudaGetDeviceProperties(&prop, i);
printf("DEVICE %d/%d NAME: %s\r\n", i + 1, nDevices, prop.name); printf("DEVICE %d/%d NAME: %s\r\n with %ld MB/%ld MB memory used", i + 1, nDevices, prop.name, free / 1024 / 1024, total / 1024 / 1024);
} }
*/
// Choose GPU where you want to execute code on // Choose GPU where you want to execute code on
// It is possible to execute the same kernel on multiple GPUs but you have to copy the data multiple times // It is possible to execute the same kernel on multiple GPUs but you have to copy the data multiple times
// Executing `cudaSetDevice(N)` before cudaMalloc / cudaMemcpy / calc_force <<< >>> will set the GPU accordingly // Executing `cudaSetDevice(N)` before cudaMalloc / cudaMemcpy / calc_force <<< >>> will set the GPU accordingly
*/
// HINT: Run with cuda-memcheck ./MDBench-NVCC in case of error // HINT: Run with cuda-memcheck ./MDBench-NVCC in case of error
// HINT: Only works for data layout = AOS!!! // HINT: Only works for data layout = AOS!!!
if(!initialized) {
checkCUDAError( "c_atom.x malloc", cudaMalloc((void**)&(c_atom.x), sizeof(MD_FLOAT) * atom->Nmax * 3) ); checkCUDAError( "c_atom.x malloc", cudaMalloc((void**)&(c_atom.x), sizeof(MD_FLOAT) * atom->Nmax * 3) );
checkCUDAError( "c_atom.x memcpy", cudaMemcpy(c_atom.x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.fx malloc", cudaMalloc((void**)&(c_atom.fx), sizeof(MD_FLOAT) * Nlocal) ); checkCUDAError( "c_atom.fx malloc", cudaMalloc((void**)&(c_atom.fx), sizeof(MD_FLOAT) * Nlocal) );
checkCUDAError( "c_atom.fx memcpy", cudaMemcpy(c_atom.fx, fx, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.fy malloc", cudaMalloc((void**)&(c_atom.fy), sizeof(MD_FLOAT) * Nlocal) ); checkCUDAError( "c_atom.fy malloc", cudaMalloc((void**)&(c_atom.fy), sizeof(MD_FLOAT) * Nlocal) );
checkCUDAError( "c_atom.fy memcpy", cudaMemcpy(c_atom.fy, fy, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.fz malloc", cudaMalloc((void**)&(c_atom.fz), sizeof(MD_FLOAT) * Nlocal) ); checkCUDAError( "c_atom.fz malloc", cudaMalloc((void**)&(c_atom.fz), sizeof(MD_FLOAT) * Nlocal) );
checkCUDAError( "c_atom.fz memcpy", cudaMemcpy(c_atom.fz, fz, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.type malloc", cudaMalloc((void**)&(c_atom.type), sizeof(int) * atom->Nmax) ); checkCUDAError( "c_atom.type malloc", cudaMalloc((void**)&(c_atom.type), sizeof(int) * atom->Nmax) );
checkCUDAError( "c_atom.type memcpy", cudaMemcpy(c_atom.type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.epsilon malloc", cudaMalloc((void**)&(c_atom.epsilon), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) ); checkCUDAError( "c_atom.epsilon malloc", cudaMalloc((void**)&(c_atom.epsilon), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom.epsilon memcpy", cudaMemcpy(c_atom.epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.sigma6 malloc", cudaMalloc((void**)&(c_atom.sigma6), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) ); checkCUDAError( "c_atom.sigma6 malloc", cudaMalloc((void**)&(c_atom.sigma6), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
checkCUDAError( "c_atom.sigma6 memcpy", cudaMemcpy(c_atom.sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.cutforcesq malloc", cudaMalloc((void**)&(c_atom.cutforcesq), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) ); checkCUDAError( "c_atom.cutforcesq malloc", cudaMalloc((void**)&(c_atom.cutforcesq), sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes) );
initialized = true;
}
checkCUDAError( "c_atom.x memcpy", cudaMemcpy(c_atom.x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.fx memcpy", cudaMemcpy(c_atom.fx, fx, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.fy memcpy", cudaMemcpy(c_atom.fy, fy, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.fz memcpy", cudaMemcpy(c_atom.fz, fz, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.type memcpy", cudaMemcpy(c_atom.type, atom->type, sizeof(int) * atom->Nmax, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.epsilon memcpy", cudaMemcpy(c_atom.epsilon, atom->epsilon, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.sigma6 memcpy", cudaMemcpy(c_atom.sigma6, atom->sigma6, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
checkCUDAError( "c_atom.cutforcesq memcpy", cudaMemcpy(c_atom.cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) ); checkCUDAError( "c_atom.cutforcesq memcpy", cudaMemcpy(c_atom.cutforcesq, atom->cutforcesq, sizeof(MD_FLOAT) * atom->ntypes * atom->ntypes, cudaMemcpyHostToDevice) );
// double start_memory_bandwidth = getTimeStamp();
int *c_neighs; int *c_neighs;
checkCUDAError( "c_neighs malloc", cudaMalloc((void**)&c_neighs, sizeof(int) * Nlocal * neighbor->maxneighs) ); checkCUDAError( "c_neighs malloc", cudaMalloc((void**)&c_neighs, sizeof(int) * Nlocal * neighbor->maxneighs) );
checkCUDAError( "c_neighs memcpy", cudaMemcpy(c_neighs, neighbor->neighbors, sizeof(int) * Nlocal * neighbor->maxneighs, cudaMemcpyHostToDevice) ); checkCUDAError( "c_neighs memcpy", cudaMemcpy(c_neighs, neighbor->neighbors, sizeof(int) * Nlocal * neighbor->maxneighs, cudaMemcpyHostToDevice) );
/*
double end_memory_bandwidth = getTimeStamp();
double memory_bandwith_time = (end_memory_bandwidth - start_memory_bandwidth);
const unsigned long bytes = sizeof(int) * Nlocal * neighbor->maxneighs;
const double gb_per_second = ((double)bytes / memory_bandwith_time) / 1024.0 / 1024.0 / 1024.0;
printf("Data transfer of %lu bytes took %fs => %f GB/s\r\n", bytes, memory_bandwith_time, gb_per_second);
*/
int *c_neigh_numneigh; int *c_neigh_numneigh;
checkCUDAError( "c_neigh_numneigh malloc", cudaMalloc((void**)&c_neigh_numneigh, sizeof(int) * Nlocal) ); checkCUDAError( "c_neigh_numneigh malloc", cudaMalloc((void**)&c_neigh_numneigh, sizeof(int) * Nlocal) );
checkCUDAError( "c_neigh_numneigh memcpy", cudaMemcpy(c_neigh_numneigh, neighbor->numneigh, sizeof(int) * Nlocal, cudaMemcpyHostToDevice) ); checkCUDAError( "c_neigh_numneigh memcpy", cudaMemcpy(c_neigh_numneigh, neighbor->numneigh, sizeof(int) * Nlocal, cudaMemcpyHostToDevice) );
const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps const int num_threads_per_block = num_threads; // this should be multiple of 32 as operations are performed at the level of warps
const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block); const int num_blocks = ceil((float)Nlocal / (float)num_threads_per_block);
// printf("Distribution size: %d\r\n%d Blocks with each %d threads\r\n", Nlocal, num_blocks, num_threads_per_block);
double S = getTimeStamp(); double S = getTimeStamp();
LIKWID_MARKER_START("force"); LIKWID_MARKER_START("force");
@ -215,12 +206,14 @@ double computeForce(
cudaMemcpy(atom->fy, c_atom.fy, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyDeviceToHost); cudaMemcpy(atom->fy, c_atom.fy, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyDeviceToHost);
cudaMemcpy(atom->fz, c_atom.fz, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyDeviceToHost); cudaMemcpy(atom->fz, c_atom.fz, sizeof(MD_FLOAT) * Nlocal, cudaMemcpyDeviceToHost);
/*
cudaFree(c_atom.x); cudaFree(c_atom.x);
cudaFree(c_atom.fx); cudaFree(c_atom.fy); cudaFree(c_atom.fz); cudaFree(c_atom.fx); cudaFree(c_atom.fy); cudaFree(c_atom.fz);
cudaFree(c_atom.type); cudaFree(c_atom.type);
cudaFree(c_atom.epsilon); cudaFree(c_atom.epsilon);
cudaFree(c_atom.sigma6); cudaFree(c_atom.sigma6);
cudaFree(c_atom.cutforcesq); cudaFree(c_atom.cutforcesq);
*/
cudaFree(c_neighs); cudaFree(c_neigh_numneigh); cudaFree(c_neighs); cudaFree(c_neigh_numneigh);

View File

@ -23,6 +23,7 @@
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <stdbool.h>
#include <unistd.h> #include <unistd.h>
#include <limits.h> #include <limits.h>
#include <math.h> #include <math.h>
@ -44,7 +45,7 @@
#define HLINE "----------------------------------------------------------------------------\n" #define HLINE "----------------------------------------------------------------------------\n"
extern double computeForce(Parameter*, Atom*, Neighbor*); extern double computeForce(bool, Parameter*, Atom*, Neighbor*);
extern double computeForceTracing(Parameter*, Atom*, Neighbor*, Stats*, int, int); extern double computeForceTracing(Parameter*, Atom*, Neighbor*, Stats*, int, int);
extern double computeForceEam(Eam* eam, Parameter*, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep); extern double computeForceEam(Eam* eam, Parameter*, Atom *atom, Neighbor *neighbor, Stats *stats, int first_exec, int timestep);
@ -262,7 +263,7 @@ int main(int argc, char** argv)
#if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS) #if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS)
computeForceTracing(&param, &atom, &neighbor, &stats, 1, 0); computeForceTracing(&param, &atom, &neighbor, &stats, 1, 0);
#else #else
computeForce(&param, &atom, &neighbor); computeForce(true, &param, &atom, &neighbor);
#endif #endif
} }
@ -277,10 +278,12 @@ int main(int argc, char** argv)
for(int n = 0; n < param.ntimes; n++) { for(int n = 0; n < param.ntimes; n++) {
initialIntegrate(&param, &atom); initialIntegrate(&param, &atom);
if((n + 1) % param.every) { const bool doReneighbour = (n + 1) % param.every == 0;
updatePbc(&atom, &param);
} else { if(doReneighbour) {
timer[NEIGH] += reneighbour(&param, &atom, &neighbor); timer[NEIGH] += reneighbour(&param, &atom, &neighbor);
} else {
updatePbc(&atom, &param);
} }
if(param.force_field == FF_EAM) { if(param.force_field == FF_EAM) {
@ -289,7 +292,7 @@ int main(int argc, char** argv)
#if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS) #if defined(MEM_TRACER) || defined(INDEX_TRACER) || defined(COMPUTE_STATS)
timer[FORCE] += computeForceTracing(&param, &atom, &neighbor, &stats, 0, n + 1); timer[FORCE] += computeForceTracing(&param, &atom, &neighbor, &stats, 0, n + 1);
#else #else
timer[FORCE] += computeForce(&param, &atom, &neighbor); timer[FORCE] += computeForce(doReneighbour, &param, &atom, &neighbor);
#endif #endif
} }
finalIntegrate(&param, &atom); finalIntegrate(&param, &atom);