Pre-compute masks for 2xnn kernel with full neighbor-lists
Signed-off-by: Rafael Ravedutti <rafaelravedutti@gmail.com>
This commit is contained in:
parent
85f1484449
commit
04ade6bcec
@ -422,8 +422,15 @@ void initMasks(Atom *atom) {
|
|||||||
mask1 = (unsigned int)(0xf - 0x3 * cond0);
|
mask1 = (unsigned int)(0xf - 0x3 * cond0);
|
||||||
mask2 = (unsigned int)(0xf - 0x7 * cond0);
|
mask2 = (unsigned int)(0xf - 0x7 * cond0);
|
||||||
mask3 = (unsigned int)(0xf - 0xf * cond0);
|
mask3 = (unsigned int)(0xf - 0xf * cond0);
|
||||||
atom->masks_2xnn[cond0 * 2 + 0] = (mask1 << half_mask_bits) | mask0;
|
atom->masks_2xnn_hn[cond0 * 2 + 0] = (mask1 << half_mask_bits) | mask0;
|
||||||
atom->masks_2xnn[cond0 * 2 + 1] = (mask3 << half_mask_bits) | mask2;
|
atom->masks_2xnn_hn[cond0 * 2 + 1] = (mask3 << half_mask_bits) | mask2;
|
||||||
|
|
||||||
|
mask0 = (unsigned int)(0xf - 0x1 * cond0);
|
||||||
|
mask1 = (unsigned int)(0xf - 0x2 * cond0);
|
||||||
|
mask2 = (unsigned int)(0xf - 0x4 * cond0);
|
||||||
|
mask3 = (unsigned int)(0xf - 0x8 * cond0);
|
||||||
|
atom->masks_2xnn_fn[cond0 * 2 + 0] = (mask1 << half_mask_bits) | mask0;
|
||||||
|
atom->masks_2xnn_fn[cond0 * 2 + 1] = (mask3 << half_mask_bits) | mask2;
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
for(unsigned int cond0 = 0; cond0 < 2; cond0++) {
|
for(unsigned int cond0 = 0; cond0 < 2; cond0++) {
|
||||||
@ -440,8 +447,23 @@ void initMasks(Atom *atom) {
|
|||||||
mask3 = (unsigned int)(0x3 - cond0 * 0x3 - 0x3 * cond1);
|
mask3 = (unsigned int)(0x3 - cond0 * 0x3 - 0x3 * cond1);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
atom->masks_2xnn[cond0 * 4 + cond1 * 2 + 0] = (mask1 << half_mask_bits) | mask0;
|
atom->masks_2xnn_hn[cond0 * 4 + cond1 * 2 + 0] = (mask1 << half_mask_bits) | mask0;
|
||||||
atom->masks_2xnn[cond0 * 4 + cond1 * 2 + 1] = (mask3 << half_mask_bits) | mask2;
|
atom->masks_2xnn_hn[cond0 * 4 + cond1 * 2 + 1] = (mask3 << half_mask_bits) | mask2;
|
||||||
|
|
||||||
|
#if CLUSTER_M < CLUSTER_N
|
||||||
|
mask0 = (unsigned int)(0xff - 0x1 * cond0 - 0x10 * cond1);
|
||||||
|
mask1 = (unsigned int)(0xff - 0x2 * cond0 - 0x20 * cond1);
|
||||||
|
mask2 = (unsigned int)(0xff - 0x4 * cond0 - 0x40 * cond1);
|
||||||
|
mask3 = (unsigned int)(0xff - 0x8 * cond0 - 0x80 * cond1);
|
||||||
|
#else
|
||||||
|
mask0 = (unsigned int)(0x3 - 0x1 * cond0);
|
||||||
|
mask1 = (unsigned int)(0x3 - 0x2 * cond0);
|
||||||
|
mask2 = (unsigned int)(0x3 - 0x1 * cond1);
|
||||||
|
mask3 = (unsigned int)(0x3 - 0x2 * cond1);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
atom->masks_2xnn_fn[cond0 * 4 + cond1 * 2 + 0] = (mask1 << half_mask_bits) | mask0;
|
||||||
|
atom->masks_2xnn_fn[cond0 * 4 + cond1 * 2 + 1] = (mask3 << half_mask_bits) | mask2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -182,6 +182,7 @@ double computeForceLJ_2xnn_half(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
{
|
{
|
||||||
LIKWID_MARKER_START("force");
|
LIKWID_MARKER_START("force");
|
||||||
|
|
||||||
|
/*
|
||||||
MD_SIMD_BITMASK filter0 = simd_load_bitmask((const int *) &atom->exclusion_filter[0 * (VECTOR_WIDTH / UNROLL_J)]);
|
MD_SIMD_BITMASK filter0 = simd_load_bitmask((const int *) &atom->exclusion_filter[0 * (VECTOR_WIDTH / UNROLL_J)]);
|
||||||
MD_SIMD_BITMASK filter2 = simd_load_bitmask((const int *) &atom->exclusion_filter[2 * (VECTOR_WIDTH / UNROLL_J)]);
|
MD_SIMD_BITMASK filter2 = simd_load_bitmask((const int *) &atom->exclusion_filter[2 * (VECTOR_WIDTH / UNROLL_J)]);
|
||||||
|
|
||||||
@ -208,6 +209,7 @@ double computeForceLJ_2xnn_half(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
diagonal_jmi_S = diagonal_jmi_S - one_S;
|
diagonal_jmi_S = diagonal_jmi_S - one_S;
|
||||||
diagonal_mask12 = simd_mask_cond_lt(zero_S, diagonal_jmi_S);
|
diagonal_mask12 = simd_mask_cond_lt(zero_S, diagonal_jmi_S);
|
||||||
#endif
|
#endif
|
||||||
|
*/
|
||||||
|
|
||||||
#pragma omp for
|
#pragma omp for
|
||||||
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
||||||
@ -238,11 +240,11 @@ double computeForceLJ_2xnn_half(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
for(int k = 0; k < numneighs_masked; k++) {
|
for(int k = 0; k < numneighs_masked; k++) {
|
||||||
int cj = neighs[k].cj;
|
int cj = neighs[k].cj;
|
||||||
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
||||||
int imask = neighs[k].imask;
|
//int imask = neighs[k].imask;
|
||||||
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
|
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
|
||||||
MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base];
|
MD_FLOAT *cj_f = &atom->cl_f[cj_vec_base];
|
||||||
MD_SIMD_MASK interact0;
|
//MD_SIMD_MASK interact0;
|
||||||
MD_SIMD_MASK interact2;
|
//MD_SIMD_MASK interact2;
|
||||||
|
|
||||||
//gmx_load_simd_2xnn_interactions((int)imask, filter0, filter2, &interact0, &interact2);
|
//gmx_load_simd_2xnn_interactions((int)imask, filter0, filter2, &interact0, &interact2);
|
||||||
|
|
||||||
@ -260,8 +262,8 @@ double computeForceLJ_2xnn_half(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
|
|
||||||
#if CLUSTER_M == CLUSTER_N
|
#if CLUSTER_M == CLUSTER_N
|
||||||
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
||||||
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn[cond0 * 2 + 0]);
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn_hn[cond0 * 2 + 0]);
|
||||||
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn[cond0 * 2 + 1]);
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn_hn[cond0 * 2 + 1]);
|
||||||
#else
|
#else
|
||||||
#if CLUSTER_M < CLUSTER_N
|
#if CLUSTER_M < CLUSTER_N
|
||||||
unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci);
|
unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci);
|
||||||
@ -270,13 +272,12 @@ double computeForceLJ_2xnn_half(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
||||||
unsigned int cond1 = (unsigned int)(cj == ci_cj1);
|
unsigned int cond1 = (unsigned int)(cj == ci_cj1);
|
||||||
#endif
|
#endif
|
||||||
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn[cond0 * 4 + cond1 * 2 + 0]);
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn_hn[cond0 * 4 + cond1 * 2 + 0]);
|
||||||
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn[cond0 * 4 + cond1 * 2 + 1]);
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn_hn[cond0 * 4 + cond1 * 2 + 1]);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
MD_SIMD_MASK cutoff_mask0 = simd_mask_cond_lt(rsq0, cutforcesq_vec);
|
MD_SIMD_MASK cutoff_mask0 = simd_mask_cond_lt(rsq0, cutforcesq_vec);
|
||||||
MD_SIMD_MASK cutoff_mask2 = simd_mask_cond_lt(rsq2, cutforcesq_vec);
|
MD_SIMD_MASK cutoff_mask2 = simd_mask_cond_lt(rsq2, cutforcesq_vec);
|
||||||
|
|
||||||
cutoff_mask0 = simd_mask_and(cutoff_mask0, excl_mask0);
|
cutoff_mask0 = simd_mask_and(cutoff_mask0, excl_mask0);
|
||||||
cutoff_mask2 = simd_mask_and(cutoff_mask2, excl_mask2);
|
cutoff_mask2 = simd_mask_and(cutoff_mask2, excl_mask2);
|
||||||
|
|
||||||
@ -299,10 +300,8 @@ double computeForceLJ_2xnn_half(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
|
|
||||||
MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0);
|
MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0);
|
||||||
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
||||||
|
|
||||||
MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec;
|
MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec;
|
||||||
MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec;
|
MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec;
|
||||||
|
|
||||||
MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec;
|
MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec;
|
||||||
MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec;
|
MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec;
|
||||||
|
|
||||||
@ -354,7 +353,6 @@ double computeForceLJ_2xnn_half(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
||||||
MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec;
|
MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec;
|
||||||
MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec;
|
MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec;
|
||||||
|
|
||||||
MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec;
|
MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec;
|
||||||
MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec;
|
MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec;
|
||||||
|
|
||||||
@ -410,7 +408,6 @@ double computeForceLJ_2xnn_full(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon);
|
MD_SIMD_FLOAT eps_vec = simd_broadcast(epsilon);
|
||||||
MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0);
|
MD_SIMD_FLOAT c48_vec = simd_broadcast(48.0);
|
||||||
MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5);
|
MD_SIMD_FLOAT c05_vec = simd_broadcast(0.5);
|
||||||
const unsigned int half_mask_bits = VECTOR_WIDTH >> 1;
|
|
||||||
|
|
||||||
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
|
||||||
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
int ci_vec_base = CI_VECTOR_BASE_INDEX(ci);
|
||||||
@ -439,6 +436,7 @@ double computeForceLJ_2xnn_full(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
MD_FLOAT *ci_f = &atom->cl_f[ci_vec_base];
|
||||||
neighs = &neighbor->neighbors[ci * neighbor->maxneighs];
|
neighs = &neighbor->neighbors[ci * neighbor->maxneighs];
|
||||||
int numneighs = neighbor->numneigh[ci];
|
int numneighs = neighbor->numneigh[ci];
|
||||||
|
int numneighs_masked = neighbor->numneigh_masked[ci];
|
||||||
|
|
||||||
MD_SIMD_FLOAT xi0_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 0]);
|
MD_SIMD_FLOAT xi0_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 0]);
|
||||||
MD_SIMD_FLOAT xi2_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 2]);
|
MD_SIMD_FLOAT xi2_tmp = simd_load_h_dual(&ci_x[CL_X_OFFSET + 2]);
|
||||||
@ -453,7 +451,7 @@ double computeForceLJ_2xnn_full(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
MD_SIMD_FLOAT fiy2 = simd_zero();
|
MD_SIMD_FLOAT fiy2 = simd_zero();
|
||||||
MD_SIMD_FLOAT fiz2 = simd_zero();
|
MD_SIMD_FLOAT fiz2 = simd_zero();
|
||||||
|
|
||||||
for(int k = 0; k < numneighs; k++) {
|
for(int k = 0; k < numneighs_masked; k++) {
|
||||||
int cj = neighs[k].cj;
|
int cj = neighs[k].cj;
|
||||||
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
||||||
int imask = neighs[k].imask;
|
int imask = neighs[k].imask;
|
||||||
@ -469,46 +467,69 @@ double computeForceLJ_2xnn_full(Parameter *param, Atom *atom, Neighbor *neighbor
|
|||||||
MD_SIMD_FLOAT delx2 = simd_sub(xi2_tmp, xj_tmp);
|
MD_SIMD_FLOAT delx2 = simd_sub(xi2_tmp, xj_tmp);
|
||||||
MD_SIMD_FLOAT dely2 = simd_sub(yi2_tmp, yj_tmp);
|
MD_SIMD_FLOAT dely2 = simd_sub(yi2_tmp, yj_tmp);
|
||||||
MD_SIMD_FLOAT delz2 = simd_sub(zi2_tmp, zj_tmp);
|
MD_SIMD_FLOAT delz2 = simd_sub(zi2_tmp, zj_tmp);
|
||||||
|
MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, simd_mul(delz0, delz0)));
|
||||||
|
MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, simd_mul(delz2, delz2)));
|
||||||
|
|
||||||
#if CLUSTER_M == CLUSTER_N
|
#if CLUSTER_M == CLUSTER_N
|
||||||
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
||||||
mask0 = (unsigned int)(0xf - 0x1 * cond0);
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn_fn[cond0 * 2 + 0]);
|
||||||
mask1 = (unsigned int)(0xf - 0x2 * cond0);
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn_fn[cond0 * 2 + 1]);
|
||||||
mask2 = (unsigned int)(0xf - 0x4 * cond0);
|
#else
|
||||||
mask3 = (unsigned int)(0xf - 0x8 * cond0);
|
#if CLUSTER_M < CLUSTER_N
|
||||||
#elif CLUSTER_M < CLUSTER_N
|
|
||||||
unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci);
|
unsigned int cond0 = (unsigned int)((cj << 1) + 0 == ci);
|
||||||
unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci);
|
unsigned int cond1 = (unsigned int)((cj << 1) + 1 == ci);
|
||||||
mask0 = (unsigned int)(0xff - 0x1 * cond0 - 0x10 * cond1);
|
|
||||||
mask1 = (unsigned int)(0xff - 0x2 * cond0 - 0x20 * cond1);
|
|
||||||
mask2 = (unsigned int)(0xff - 0x4 * cond0 - 0x40 * cond1);
|
|
||||||
mask3 = (unsigned int)(0xff - 0x8 * cond0 - 0x80 * cond1);
|
|
||||||
#else
|
#else
|
||||||
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
unsigned int cond0 = (unsigned int)(cj == ci_cj0);
|
||||||
unsigned int cond1 = (unsigned int)(cj == ci_cj1);
|
unsigned int cond1 = (unsigned int)(cj == ci_cj1);
|
||||||
mask0 = (unsigned int)(0x3 - 0x1 * cond0);
|
|
||||||
mask1 = (unsigned int)(0x3 - 0x2 * cond0);
|
|
||||||
mask2 = (unsigned int)(0x3 - 0x1 * cond1);
|
|
||||||
mask3 = (unsigned int)(0x3 - 0x2 * cond1);
|
|
||||||
#endif
|
#endif
|
||||||
|
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32(atom->masks_2xnn_fn[cond0 * 4 + cond1 * 2 + 0]);
|
||||||
MD_SIMD_MASK excl_mask0 = simd_mask_from_u32((mask1 << half_mask_bits) | mask0);
|
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32(atom->masks_2xnn_fn[cond0 * 4 + cond1 * 2 + 1]);
|
||||||
MD_SIMD_MASK excl_mask2 = simd_mask_from_u32((mask3 << half_mask_bits) | mask2);
|
#endif
|
||||||
|
|
||||||
MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, simd_mul(delz0, delz0)));
|
|
||||||
MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, simd_mul(delz2, delz2)));
|
|
||||||
|
|
||||||
MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec));
|
MD_SIMD_MASK cutoff_mask0 = simd_mask_and(excl_mask0, simd_mask_cond_lt(rsq0, cutforcesq_vec));
|
||||||
MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec));
|
MD_SIMD_MASK cutoff_mask2 = simd_mask_and(excl_mask2, simd_mask_cond_lt(rsq2, cutforcesq_vec));
|
||||||
|
|
||||||
MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0);
|
MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0);
|
||||||
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
||||||
|
MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec;
|
||||||
|
MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec;
|
||||||
|
MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec;
|
||||||
|
MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec;
|
||||||
|
|
||||||
MD_SIMD_FLOAT sr6_0 = simd_mul(sr2_0, simd_mul(sr2_0, simd_mul(sr2_0, sigma6_vec)));
|
fix0 = simd_masked_add(fix0, simd_mul(delx0, force0), cutoff_mask0);
|
||||||
MD_SIMD_FLOAT sr6_2 = simd_mul(sr2_2, simd_mul(sr2_2, simd_mul(sr2_2, sigma6_vec)));
|
fiy0 = simd_masked_add(fiy0, simd_mul(dely0, force0), cutoff_mask0);
|
||||||
|
fiz0 = simd_masked_add(fiz0, simd_mul(delz0, force0), cutoff_mask0);
|
||||||
|
fix2 = simd_masked_add(fix2, simd_mul(delx2, force2), cutoff_mask2);
|
||||||
|
fiy2 = simd_masked_add(fiy2, simd_mul(dely2, force2), cutoff_mask2);
|
||||||
|
fiz2 = simd_masked_add(fiz2, simd_mul(delz2, force2), cutoff_mask2);
|
||||||
|
}
|
||||||
|
|
||||||
MD_SIMD_FLOAT force0 = simd_mul(c48_vec, simd_mul(sr6_0, simd_mul(simd_sub(sr6_0, c05_vec), simd_mul(sr2_0, eps_vec))));
|
for(int k = numneighs_masked; k < numneighs; k++) {
|
||||||
MD_SIMD_FLOAT force2 = simd_mul(c48_vec, simd_mul(sr6_2, simd_mul(simd_sub(sr6_2, c05_vec), simd_mul(sr2_2, eps_vec))));
|
int cj = neighs[k].cj;
|
||||||
|
int cj_vec_base = CJ_VECTOR_BASE_INDEX(cj);
|
||||||
|
MD_FLOAT *cj_x = &atom->cl_x[cj_vec_base];
|
||||||
|
|
||||||
|
MD_SIMD_FLOAT xj_tmp = simd_load_h_duplicate(&cj_x[CL_X_OFFSET]);
|
||||||
|
MD_SIMD_FLOAT yj_tmp = simd_load_h_duplicate(&cj_x[CL_Y_OFFSET]);
|
||||||
|
MD_SIMD_FLOAT zj_tmp = simd_load_h_duplicate(&cj_x[CL_Z_OFFSET]);
|
||||||
|
MD_SIMD_FLOAT delx0 = simd_sub(xi0_tmp, xj_tmp);
|
||||||
|
MD_SIMD_FLOAT dely0 = simd_sub(yi0_tmp, yj_tmp);
|
||||||
|
MD_SIMD_FLOAT delz0 = simd_sub(zi0_tmp, zj_tmp);
|
||||||
|
MD_SIMD_FLOAT delx2 = simd_sub(xi2_tmp, xj_tmp);
|
||||||
|
MD_SIMD_FLOAT dely2 = simd_sub(yi2_tmp, yj_tmp);
|
||||||
|
MD_SIMD_FLOAT delz2 = simd_sub(zi2_tmp, zj_tmp);
|
||||||
|
MD_SIMD_FLOAT rsq0 = simd_fma(delx0, delx0, simd_fma(dely0, dely0, simd_mul(delz0, delz0)));
|
||||||
|
MD_SIMD_FLOAT rsq2 = simd_fma(delx2, delx2, simd_fma(dely2, dely2, simd_mul(delz2, delz2)));
|
||||||
|
|
||||||
|
MD_SIMD_MASK cutoff_mask0 = simd_mask_cond_lt(rsq0, cutforcesq_vec);
|
||||||
|
MD_SIMD_MASK cutoff_mask2 = simd_mask_cond_lt(rsq2, cutforcesq_vec);
|
||||||
|
|
||||||
|
MD_SIMD_FLOAT sr2_0 = simd_reciprocal(rsq0);
|
||||||
|
MD_SIMD_FLOAT sr2_2 = simd_reciprocal(rsq2);
|
||||||
|
MD_SIMD_FLOAT sr6_0 = sr2_0 * sr2_0 * sr2_0 * sigma6_vec;
|
||||||
|
MD_SIMD_FLOAT sr6_2 = sr2_2 * sr2_2 * sr2_2 * sigma6_vec;
|
||||||
|
MD_SIMD_FLOAT force0 = c48_vec * sr6_0 * (sr6_0 - c05_vec) * sr2_0 * eps_vec;
|
||||||
|
MD_SIMD_FLOAT force2 = c48_vec * sr6_2 * (sr6_2 - c05_vec) * sr2_2 * eps_vec;
|
||||||
|
|
||||||
fix0 = simd_masked_add(fix0, simd_mul(delx0, force0), cutoff_mask0);
|
fix0 = simd_masked_add(fix0, simd_mul(delx0, force0), cutoff_mask0);
|
||||||
fiy0 = simd_masked_add(fiy0, simd_mul(dely0, force0), cutoff_mask0);
|
fiy0 = simd_masked_add(fiy0, simd_mul(dely0, force0), cutoff_mask0);
|
||||||
|
@ -124,7 +124,8 @@ typedef struct {
|
|||||||
MD_UINT *exclusion_filter;
|
MD_UINT *exclusion_filter;
|
||||||
MD_FLOAT *diagonal_4xn_j_minus_i;
|
MD_FLOAT *diagonal_4xn_j_minus_i;
|
||||||
MD_FLOAT *diagonal_2xnn_j_minus_i;
|
MD_FLOAT *diagonal_2xnn_j_minus_i;
|
||||||
unsigned int masks_2xnn[8];
|
unsigned int masks_2xnn_hn[8];
|
||||||
|
unsigned int masks_2xnn_fn[8];
|
||||||
} Atom;
|
} Atom;
|
||||||
|
|
||||||
extern void initAtom(Atom*);
|
extern void initAtom(Atom*);
|
||||||
|
@ -314,11 +314,14 @@ void buildNeighbor(Atom *atom, Neighbor *neighbor) {
|
|||||||
|
|
||||||
if(d_bb_sq < cutneighsq) {
|
if(d_bb_sq < cutneighsq) {
|
||||||
if(d_bb_sq < rbb_sq || atomDistanceInRange(atom, ci, cj, cutneighsq)) {
|
if(d_bb_sq < rbb_sq || atomDistanceInRange(atom, ci, cj, cutneighsq)) {
|
||||||
|
// We use true (1) for rdiag because we only care if there are masks
|
||||||
|
// at all, and when this is set to false (0) the self-exclusions are
|
||||||
|
// not accounted for, which makes the optimized version to not work!
|
||||||
unsigned int imask;
|
unsigned int imask;
|
||||||
#if CLUSTER_N == (VECTOR_WIDTH / 2) // 2xnn
|
#if CLUSTER_N == (VECTOR_WIDTH / 2) // 2xnn
|
||||||
imask = get_imask_simd_2xnn(neighbor->half_neigh, ci, cj);
|
imask = get_imask_simd_2xnn(1, ci, cj);
|
||||||
#else // 4xn
|
#else // 4xn
|
||||||
imask = get_imask_simd_4xn(neighbor->half_neigh, ci, cj);
|
imask = get_imask_simd_4xn(1, ci, cj);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
if(imask == NBNXN_INTERACTION_MASK_ALL) {
|
if(imask == NBNXN_INTERACTION_MASK_ALL) {
|
||||||
|
Loading…
Reference in New Issue
Block a user