MD-Bench/lammps/force_dem.c

233 lines
7.8 KiB
C
Raw Normal View History

/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2021 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <likwid-marker.h>
#include <timing.h>
#include <neighbor.h>
#include <parameter.h>
#include <atom.h>
#include <stats.h>
// TODO: Joint common files for gromacs and lammps variants
#include "../gromacs/includes/simd.h"
double computeForceDEMFullNeigh_plain_c(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
int Nlocal = atom->Nlocal;
int* neighs;
#ifndef EXPLICIT_TYPES
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
#endif
for(int i = 0; i < Nlocal; i++) {
atom_fx(i) = 0.0;
atom_fy(i) = 0.0;
atom_fz(i) = 0.0;
}
double S = getTimeStamp();
LIKWID_MARKER_START("force");
#pragma omp parallel for
for(int i = 0; i < Nlocal; i++) {
neighs = &neighbor->neighbors[i * neighbor->maxneighs];
int numneighs = neighbor->numneigh[i];
MD_FLOAT irad = atom->radius[i];
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
MD_FLOAT fix = 0;
MD_FLOAT fiy = 0;
MD_FLOAT fiz = 0;
#ifdef EXPLICIT_TYPES
const int type_i = atom->type[i];
#endif
for(int k = 0; k < numneighs; k++) {
int j = neighs[k];
MD_FLOAT jrad = atom->radius[j];
MD_FLOAT xj = atom_x(j);
MD_FLOAT yj = atom_y(j);
MD_FLOAT zj = atom_z(j);
MD_FLOAT delx = xtmp - xj;
MD_FLOAT dely = ytmp - yj;
MD_FLOAT delz = ztmp - zj;
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
#endif
if(rsq < cutforcesq) {
MD_FLOAT sq = sqrt(rsq);
// penetration depth
MD_FLOAT p = irad + jrad - sq;
if(p < 0) { continue; }
// contact position
MD_FLOAT cterm = jrad / (irad + jrad);
MD_FLOAT cx = xj + cterm * delx;
MD_FLOAT cy = yj + cterm * dely;
MD_FLOAT cz = zj + cterm * delz;
// delta contact and particle position
MD_FLOAT delcx = cx - xtmp;
MD_FLOAT delcy = cy - ytmp;
MD_FLOAT delcz = cz - ztmp;
// contact velocity
MD_FLOAT cvx = (atom_vx(i) + atom_avx(i) * delcx) - (atom_vx(j) + atom_avx(j) * (cx - xj));
MD_FLOAT cvy = (atom_vy(i) + atom_avy(i) * delcy) - (atom_vy(j) + atom_avy(j) * (cy - yj));
MD_FLOAT cvz = (atom_vz(i) + atom_avz(i) * delcz) - (atom_vz(j) + atom_avz(j) * (cz - zj));
MD_FLOAT vsq = sqrt(cvx * cvx + cvy * cvy + cvz * cvz);
// normal distance
MD_FLOAT nx = delx / sq;
MD_FLOAT ny = dely / sq;
MD_FLOAT nz = delz / sq;
// normal contact velocity
MD_FLOAT vnx = cvx / vsq;
MD_FLOAT vny = cvy / vsq;
MD_FLOAT vnz = cvz / vsq;
// forces
MD_FLOAT fnx = ks * p * nx - kdn * vn;
MD_FLOAT fny = ks * p * ny - kdn * vn;
MD_FLOAT fnz = ks * p * nz - kdn * vn;
MD_FLOAT ftx = MIN(kdt * vtsq, kf * fnx) * tx;
MD_FLOAT fty = MIN(kdt * vtsq, kf * fny) * ty;
MD_FLOAT ftz = MIN(kdt * vtsq, kf * fnz) * tz;
fix += fnx + ftx;
fiy += fny + fty;
fiz += fnz + ftz;
// torque
//MD_FLOAT taux = delcx * ftx;
//MD_FLOAT tauy = delcy * fty;
//MD_FLOAT tauz = delcz * ftz;
#ifdef USE_REFERENCE_VERSION
addStat(stats->atoms_within_cutoff, 1);
} else {
addStat(stats->atoms_outside_cutoff, 1);
#endif
}
}
atom_fx(i) += fix;
atom_fy(i) += fiy;
atom_fz(i) += fiz;
addStat(stats->total_force_neighs, numneighs);
addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH);
}
LIKWID_MARKER_STOP("force");
double E = getTimeStamp();
return E-S;
}
double computeForceDEMHalfNeigh(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
int Nlocal = atom->Nlocal;
int* neighs;
#ifndef EXPLICIT_TYPES
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
MD_FLOAT sigma6 = param->sigma6;
MD_FLOAT epsilon = param->epsilon;
#endif
for(int i = 0; i < Nlocal; i++) {
atom_fx(i) = 0.0;
atom_fy(i) = 0.0;
atom_fz(i) = 0.0;
}
double S = getTimeStamp();
LIKWID_MARKER_START("forceLJ-halfneigh");
for(int i = 0; i < Nlocal; i++) {
neighs = &neighbor->neighbors[i * neighbor->maxneighs];
int numneighs = neighbor->numneigh[i];
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
MD_FLOAT fix = 0;
MD_FLOAT fiy = 0;
MD_FLOAT fiz = 0;
#ifdef EXPLICIT_TYPES
const int type_i = atom->type[i];
#endif
// Pragma required to vectorize the inner loop
#ifdef ENABLE_OMP_SIMD
#pragma omp simd reduction(+: fix,fiy,fiz)
#endif
for(int k = 0; k < numneighs; k++) {
int j = neighs[k];
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
#ifdef EXPLICIT_TYPES
const int type_j = atom->type[j];
const int type_ij = type_i * atom->ntypes + type_j;
const MD_FLOAT cutforcesq = atom->cutforcesq[type_ij];
const MD_FLOAT sigma6 = atom->sigma6[type_ij];
const MD_FLOAT epsilon = atom->epsilon[type_ij];
#endif
if(rsq < cutforcesq) {
MD_FLOAT sr2 = 1.0 / rsq;
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
fix += delx * force;
fiy += dely * force;
fiz += delz * force;
// We do not need to update forces for ghost atoms
if(j < Nlocal) {
atom_fx(j) -= delx * force;
atom_fy(j) -= dely * force;
atom_fz(j) -= delz * force;
}
}
}
atom_fx(i) += fix;
atom_fy(i) += fiy;
atom_fz(i) += fiz;
addStat(stats->total_force_neighs, numneighs);
addStat(stats->total_force_iters, (numneighs + VECTOR_WIDTH - 1) / VECTOR_WIDTH);
}
LIKWID_MARKER_STOP("forceLJ-halfneigh");
double E = getTimeStamp();
return E-S;
}