MD-Bench/lammps/neighbor.c

386 lines
12 KiB
C
Raw Normal View History

2020-08-18 14:27:28 +02:00
/*
* Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
* All rights reserved. This file is part of MD-Bench.
* Use of this source code is governed by a LGPL-3.0
* license that can be found in the LICENSE file.
2020-08-18 14:27:28 +02:00
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <neighbor.h>
#include <parameter.h>
#include <atom.h>
#define SMALL 1.0e-6
#define FACTOR 0.999
MD_FLOAT xprd, yprd, zprd;
MD_FLOAT bininvx, bininvy, bininvz;
int mbinxlo, mbinylo, mbinzlo;
int nbinx, nbiny, nbinz;
int mbinx, mbiny, mbinz; // n bins in x, y, z
int *bincount;
int *bins;
int mbins; //total number of bins
int atoms_per_bin; // max atoms per bin
MD_FLOAT cutneigh;
MD_FLOAT cutneighsq; // neighbor cutoff squared
int nmax;
int nstencil; // # of bins in stencil
int* stencil; // stencil list of bin offsets
MD_FLOAT binsizex, binsizey, binsizez;
static int coord2bin(MD_FLOAT, MD_FLOAT , MD_FLOAT);
static MD_FLOAT bindist(int, int, int);
2020-08-18 14:27:28 +02:00
/* exported subroutines */
void initNeighbor(Neighbor *neighbor, Parameter *param) {
MD_FLOAT neighscale = 5.0 / 6.0;
xprd = param->nx * param->lattice;
yprd = param->ny * param->lattice;
zprd = param->nz * param->lattice;
2020-08-18 14:27:28 +02:00
cutneigh = param->cutneigh;
nbinx = neighscale * param->nx;
nbiny = neighscale * param->ny;
nbinz = neighscale * param->nz;
nmax = 0;
atoms_per_bin = 8;
stencil = NULL;
bins = NULL;
bincount = NULL;
neighbor->maxneighs = 100;
neighbor->numneigh = NULL;
neighbor->neighbors = NULL;
neighbor->half_neigh = param->half_neigh;
2020-08-18 14:27:28 +02:00
}
void setupNeighbor(Parameter* param) {
MD_FLOAT coord;
2020-08-18 14:27:28 +02:00
int mbinxhi, mbinyhi, mbinzhi;
int nextx, nexty, nextz;
if(param->input_file != NULL) {
xprd = param->xprd;
yprd = param->yprd;
zprd = param->zprd;
}
// TODO: update lo and hi for standard case and use them here instead
MD_FLOAT xlo = 0.0; MD_FLOAT xhi = xprd;
MD_FLOAT ylo = 0.0; MD_FLOAT yhi = yprd;
MD_FLOAT zlo = 0.0; MD_FLOAT zhi = zprd;
2020-08-18 14:27:28 +02:00
cutneighsq = cutneigh * cutneigh;
if(param->input_file != NULL) {
binsizex = cutneigh * 0.5;
binsizey = cutneigh * 0.5;
binsizez = cutneigh * 0.5;
nbinx = (int)((param->xhi - param->xlo) / binsizex);
nbiny = (int)((param->yhi - param->ylo) / binsizey);
nbinz = (int)((param->zhi - param->zlo) / binsizez);
if(nbinx == 0) { nbinx = 1; }
if(nbiny == 0) { nbiny = 1; }
if(nbinz == 0) { nbinz = 1; }
bininvx = nbinx / (param->xhi - param->xlo);
bininvy = nbiny / (param->yhi - param->ylo);
bininvz = nbinz / (param->zhi - param->zlo);
} else {
binsizex = xprd / nbinx;
binsizey = yprd / nbiny;
binsizez = zprd / nbinz;
bininvx = 1.0 / binsizex;
bininvy = 1.0 / binsizey;
bininvz = 1.0 / binsizez;
}
2020-08-18 14:27:28 +02:00
coord = xlo - cutneigh - SMALL * xprd;
mbinxlo = (int) (coord * bininvx);
if (coord < 0.0) { mbinxlo = mbinxlo - 1; }
2020-08-18 14:27:28 +02:00
coord = xhi + cutneigh + SMALL * xprd;
mbinxhi = (int) (coord * bininvx);
coord = ylo - cutneigh - SMALL * yprd;
mbinylo = (int) (coord * bininvy);
if (coord < 0.0) { mbinylo = mbinylo - 1; }
2020-08-18 14:27:28 +02:00
coord = yhi + cutneigh + SMALL * yprd;
mbinyhi = (int) (coord * bininvy);
coord = zlo - cutneigh - SMALL * zprd;
mbinzlo = (int) (coord * bininvz);
if (coord < 0.0) { mbinzlo = mbinzlo - 1; }
2020-08-18 14:27:28 +02:00
coord = zhi + cutneigh + SMALL * zprd;
mbinzhi = (int) (coord * bininvz);
mbinxlo = mbinxlo - 1;
mbinxhi = mbinxhi + 1;
mbinx = mbinxhi - mbinxlo + 1;
mbinylo = mbinylo - 1;
mbinyhi = mbinyhi + 1;
mbiny = mbinyhi - mbinylo + 1;
mbinzlo = mbinzlo - 1;
mbinzhi = mbinzhi + 1;
mbinz = mbinzhi - mbinzlo + 1;
nextx = (int) (cutneigh * bininvx);
if(nextx * binsizex < FACTOR * cutneigh) nextx++;
nexty = (int) (cutneigh * bininvy);
if(nexty * binsizey < FACTOR * cutneigh) nexty++;
nextz = (int) (cutneigh * bininvz);
if(nextz * binsizez < FACTOR * cutneigh) nextz++;
if (stencil) { free(stencil); }
stencil = (int*) malloc((2 * nextz + 1) * (2 * nexty + 1) * (2 * nextx + 1) * sizeof(int));
2020-08-18 14:27:28 +02:00
nstencil = 0;
int kstart = -nextz;
for(int k = kstart; k <= nextz; k++) {
for(int j = -nexty; j <= nexty; j++) {
for(int i = -nextx; i <= nextx; i++) {
if(bindist(i, j, k) < cutneighsq) {
stencil[nstencil++] = k * mbiny * mbinx + j * mbinx + i;
2020-08-18 14:27:28 +02:00
}
}
}
}
mbins = mbinx * mbiny * mbinz;
if (bincount) { free(bincount); }
2020-08-18 14:27:28 +02:00
bincount = (int*) malloc(mbins * sizeof(int));
if (bins) { free(bins); }
2020-08-18 14:27:28 +02:00
bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int));
}
void buildNeighbor_cpu(Atom *atom, Neighbor *neighbor) {
2020-08-18 14:27:28 +02:00
int nall = atom->Nlocal + atom->Nghost;
/* extend atom arrays if necessary */
if(nall > nmax) {
nmax = nall;
if(neighbor->numneigh) free(neighbor->numneigh);
if(neighbor->neighbors) free(neighbor->neighbors);
neighbor->numneigh = (int*) malloc(nmax * sizeof(int));
neighbor->neighbors = (int*) malloc(nmax * neighbor->maxneighs * sizeof(int*));
}
/* bin local & ghost atoms */
binatoms(atom);
int resize = 1;
/* loop over each atom, storing neighbors */
while(resize) {
int new_maxneighs = neighbor->maxneighs;
resize = 0;
for(int i = 0; i < atom->Nlocal; i++) {
int* neighptr = &(neighbor->neighbors[i * neighbor->maxneighs]);
int n = 0;
MD_FLOAT xtmp = atom_x(i);
MD_FLOAT ytmp = atom_y(i);
MD_FLOAT ztmp = atom_z(i);
2020-08-18 14:27:28 +02:00
int ibin = coord2bin(xtmp, ytmp, ztmp);
#ifdef EXPLICIT_TYPES
int type_i = atom->type[i];
#endif
2020-08-18 14:27:28 +02:00
for(int k = 0; k < nstencil; k++) {
int jbin = ibin + stencil[k];
int* loc_bin = &bins[jbin * atoms_per_bin];
for(int m = 0; m < bincount[jbin]; m++) {
int j = loc_bin[m];
if((j == i) || (neighbor->half_neigh && (j < i))) {
2020-08-18 14:27:28 +02:00
continue;
}
MD_FLOAT delx = xtmp - atom_x(j);
MD_FLOAT dely = ytmp - atom_y(j);
MD_FLOAT delz = ztmp - atom_z(j);
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
2020-08-18 14:27:28 +02:00
#ifdef EXPLICIT_TYPES
int type_j = atom->type[j];
const MD_FLOAT cutoff = atom->cutneighsq[type_i * atom->ntypes + type_j];
#else
const MD_FLOAT cutoff = cutneighsq;
#endif
if(rsq <= cutoff) {
2020-08-18 14:27:28 +02:00
neighptr[n++] = j;
}
}
}
neighbor->numneigh[i] = n;
if(n >= neighbor->maxneighs) {
resize = 1;
if(n >= new_maxneighs) {
new_maxneighs = n;
}
}
}
if(resize) {
printf("RESIZE %d\n", neighbor->maxneighs);
neighbor->maxneighs = new_maxneighs * 1.2;
free(neighbor->neighbors);
neighbor->neighbors = (int*) malloc(atom->Nmax * neighbor->maxneighs * sizeof(int));
}
}
}
/* internal subroutines */
MD_FLOAT bindist(int i, int j, int k) {
MD_FLOAT delx, dely, delz;
2020-08-18 14:27:28 +02:00
if(i > 0) {
delx = (i - 1) * binsizex;
} else if(i == 0) {
delx = 0.0;
} else {
delx = (i + 1) * binsizex;
}
if(j > 0) {
dely = (j - 1) * binsizey;
} else if(j == 0) {
dely = 0.0;
} else {
dely = (j + 1) * binsizey;
}
if(k > 0) {
delz = (k - 1) * binsizez;
} else if(k == 0) {
delz = 0.0;
} else {
delz = (k + 1) * binsizez;
}
return (delx * delx + dely * dely + delz * delz);
}
int coord2bin(MD_FLOAT xin, MD_FLOAT yin, MD_FLOAT zin) {
2020-08-18 14:27:28 +02:00
int ix, iy, iz;
if(xin >= xprd) {
ix = (int)((xin - xprd) * bininvx) + nbinx - mbinxlo;
} else if(xin >= 0.0) {
ix = (int)(xin * bininvx) - mbinxlo;
} else {
ix = (int)(xin * bininvx) - mbinxlo - 1;
}
if(yin >= yprd) {
iy = (int)((yin - yprd) * bininvy) + nbiny - mbinylo;
} else if(yin >= 0.0) {
iy = (int)(yin * bininvy) - mbinylo;
} else {
iy = (int)(yin * bininvy) - mbinylo - 1;
}
if(zin >= zprd) {
iz = (int)((zin - zprd) * bininvz) + nbinz - mbinzlo;
} else if(zin >= 0.0) {
iz = (int)(zin * bininvz) - mbinzlo;
} else {
iz = (int)(zin * bininvz) - mbinzlo - 1;
}
return (iz * mbiny * mbinx + iy * mbinx + ix + 1);
}
void binatoms(Atom *atom) {
2020-08-18 14:27:28 +02:00
int nall = atom->Nlocal + atom->Nghost;
int resize = 1;
while(resize > 0) {
resize = 0;
for(int i = 0; i < mbins; i++) {
bincount[i] = 0;
}
for(int i = 0; i < nall; i++) {
int ibin = coord2bin(atom_x(i), atom_y(i), atom_z(i));
2020-08-18 14:27:28 +02:00
if(bincount[ibin] < atoms_per_bin) {
int ac = bincount[ibin]++;
bins[ibin * atoms_per_bin + ac] = i;
} else {
resize = 1;
}
}
if(resize) {
free(bins);
atoms_per_bin *= 2;
bins = (int*) malloc(mbins * atoms_per_bin * sizeof(int));
}
}
}
void sortAtom(Atom* atom) {
binatoms(atom);
int Nmax = atom->Nmax;
int* binpos = bincount;
for(int i = 1; i < mbins; i++) {
binpos[i] += binpos[i - 1];
}
#ifdef AOS
MD_FLOAT* new_x = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
MD_FLOAT* new_vx = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT) * 3);
#else
MD_FLOAT* new_x = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_y = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_z = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_vx = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_vy = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
MD_FLOAT* new_vz = (MD_FLOAT*) malloc(Nmax * sizeof(MD_FLOAT));
#endif
MD_FLOAT* old_x = atom->x; MD_FLOAT* old_y = atom->y; MD_FLOAT* old_z = atom->z;
MD_FLOAT* old_vx = atom->vx; MD_FLOAT* old_vy = atom->vy; MD_FLOAT* old_vz = atom->vz;
for(int mybin = 0; mybin < mbins; mybin++) {
int start = mybin > 0 ? binpos[mybin - 1] : 0;
int count = binpos[mybin] - start;
for(int k = 0; k < count; k++) {
int new_i = start + k;
int old_i = bins[mybin * atoms_per_bin + k];
#ifdef AOS
new_x[new_i * 3 + 0] = old_x[old_i * 3 + 0];
new_x[new_i * 3 + 1] = old_x[old_i * 3 + 1];
new_x[new_i * 3 + 2] = old_x[old_i * 3 + 2];
new_vx[new_i * 3 + 0] = old_vx[old_i * 3 + 0];
new_vx[new_i * 3 + 1] = old_vx[old_i * 3 + 1];
new_vx[new_i * 3 + 2] = old_vx[old_i * 3 + 2];
#else
new_x[new_i] = old_x[old_i];
new_y[new_i] = old_y[old_i];
new_z[new_i] = old_z[old_i];
new_vx[new_i] = old_vx[old_i];
new_vy[new_i] = old_vy[old_i];
new_vz[new_i] = old_vz[old_i];
#endif
}
}
free(atom->x);
free(atom->vx);
atom->x = new_x;
atom->vx = new_vx;
#ifndef AOS
free(atom->y);
free(atom->z);
free(atom->vy);
free(atom->vz);
atom->y = new_y;
atom->z = new_z;
atom->vy = new_vy;
atom->vz = new_vz;
#endif
}