MD-Bench/src/main-stub.c

231 lines
8.1 KiB
C
Raw Normal View History

#include <stdio.h>
#include <string.h>
//---
#include <likwid-marker.h>
//---
#include <timing.h>
#include <allocate.h>
#include <neighbor.h>
#include <parameter.h>
#include <atom.h>
#include <thermo.h>
#include <pbc.h>
#define HLINE "----------------------------------------------------------------------------\n"
#define LATTICE_DISTANCE 10.0
#define NEIGH_DISTANCE 1.0
extern double computeForce( Parameter*, Atom*, Neighbor*);
void init(Parameter *param) {
param->epsilon = 1.0;
param->sigma6 = 1.0;
param->rho = 0.8442;
param->ntimes = 200;
param->nx = 4;
param->ny = 4;
param->nz = 2;
param->lattice = LATTICE_DISTANCE;
param->cutforce = 5.0;
param->cutneigh = param->cutforce;
param->mass = 1.0;
// Unused
param->dt = 0.005;
param->dtforce = 0.5 * param->dt;
param->nstat = 100;
param->temp = 1.44;
param->every = 20;
}
// Show debug messages
//#define DEBUG(msg) printf(msg)
// Do not show debug messages
#define DEBUG(msg)
#define ADD_ATOM(x, y, z, vx, vy, vz) atom_x(atom->Nlocal) = base_x + x * NEIGH_DISTANCE; \
atom_y(atom->Nlocal) = base_y + y * NEIGH_DISTANCE; \
atom_z(atom->Nlocal) = base_z + z * NEIGH_DISTANCE; \
atom->vx[atom->Nlocal] = vy; \
atom->vy[atom->Nlocal] = vy; \
atom->vz[atom->Nlocal] = vz; \
atom->Nlocal++
int main(int argc, const char *argv[]) {
Atom atom_data;
Atom *atom = (Atom *)(&atom_data);
Neighbor neighbor;
Parameter param;
int atoms_per_unit_cell = 8;
int csv = 0;
double freq = 0.0;
LIKWID_MARKER_INIT;
LIKWID_MARKER_REGISTER("force");
DEBUG("Initializing parameters...\n");
init(&param);
for(int i = 0; i < argc; i++)
{
if((strcmp(argv[i], "-n") == 0) || (strcmp(argv[i], "--nsteps") == 0))
{
param.ntimes = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-nx") == 0))
{
param.nx = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-ny") == 0))
{
param.ny = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-nz") == 0))
{
param.nz = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-na") == 0))
{
atoms_per_unit_cell = atoi(argv[++i]);
continue;
}
if((strcmp(argv[i], "-f") == 0))
{
freq = atof(argv[++i]) * 1.E9;
continue;
}
if((strcmp(argv[i], "-csv") == 0))
{
csv = 1;
continue;
}
if((strcmp(argv[i], "-h") == 0) || (strcmp(argv[i], "--help") == 0))
{
printf("MD Bench: A minimalistic re-implementation of miniMD\n");
printf(HLINE);
printf("-n / --nsteps <int>: set number of timesteps for simulation\n");
printf("-nx/-ny/-nz <int>: set linear dimension of systembox in x/y/z direction\n");
printf("-na <int>: set number of atoms per unit cell\n");
printf("-f <real>: set CPU frequency (GHz) and display average cycles per atom and neighbors\n");
printf("-csv: set output as CSV style\n");
printf(HLINE);
exit(EXIT_SUCCESS);
}
}
param.xprd = param.nx * LATTICE_DISTANCE;
param.yprd = param.ny * LATTICE_DISTANCE;
param.zprd = param.nz * LATTICE_DISTANCE;
DEBUG("Initializing atoms...\n");
initAtom(atom);
DEBUG("Creating atoms...\n");
for(int i = 0; i < param.nx; ++i) {
for(int j = 0; j < param.ny; ++j) {
for(int k = 0; k < param.nz; ++k) {
int added_atoms = 0;
int fac_x = 1;
int fac_y = 1;
int fac_z = 1;
int fmod = 0;
MD_FLOAT base_x = i * LATTICE_DISTANCE;
MD_FLOAT base_y = j * LATTICE_DISTANCE;
MD_FLOAT base_z = k * LATTICE_DISTANCE;
MD_FLOAT vx = 0.0;
MD_FLOAT vy = 0.0;
MD_FLOAT vz = 0.0;
while(atom->Nlocal > atom->Nmax - atoms_per_unit_cell) {
growAtom(atom);
}
while(fac_x * fac_y * fac_z < atoms_per_unit_cell) {
if(fmod == 0) { fac_x *= 2; }
if(fmod == 1) { fac_y *= 2; }
if(fmod == 2) { fac_z *= 2; }
fmod = (fmod + 1) % 3;
}
MD_FLOAT offset_x = (fac_x > 1) ? 1.0 / (fac_x - 1) : (int)fac_x;
MD_FLOAT offset_y = (fac_y > 1) ? 1.0 / (fac_y - 1) : (int)fac_y;
MD_FLOAT offset_z = (fac_z > 1) ? 1.0 / (fac_z - 1) : (int)fac_z;
for(int ii = 0; ii < fac_x; ++ii) {
for(int jj = 0; jj < fac_y; ++jj) {
for(int kk = 0; kk < fac_z; ++kk) {
if(added_atoms < atoms_per_unit_cell) {
ADD_ATOM(ii * offset_x, jj * offset_y, kk * offset_z, vx, vy, vz);
added_atoms++;
}
}
}
}
}
}
}
const double estim_atom_volume = (double)(atom->Nlocal * 3 * sizeof(MD_FLOAT));
const double estim_neighbors_volume = (double)(atom->Nlocal * (atoms_per_unit_cell - 1 + 2) * sizeof(int));
const double estim_volume = (double)(atom->Nlocal * 6 * sizeof(MD_FLOAT) + estim_neighbors_volume);
if(!csv) {
printf("Number of timesteps: %d\n", param.ntimes);
printf("System size (unit cells): %dx%dx%d\n", param.nx, param.ny, param.nz);
printf("Atoms per unit cell: %d\n", atoms_per_unit_cell);
printf("Total number of atoms: %d\n", atom->Nlocal);
printf("Estimated total data volume (kB): %.4f\n", estim_volume / 1000.0);
printf("Estimated atom data volume (kB): %.4f\n", estim_atom_volume / 1000.0);
printf("Estimated neighborlist data volume (kB): %.4f\n", estim_neighbors_volume / 1000.0);
}
DEBUG("Initializing neighbor lists...\n");
initNeighbor(&neighbor, &param);
DEBUG("Setting up neighbor lists...\n");
setupNeighbor();
DEBUG("Building neighbor lists...\n");
buildNeighbor(atom, &neighbor);
DEBUG("Computing forces...\n");
computeForce(&param, atom, &neighbor);
double S, E;
S = getTimeStamp();
LIKWID_MARKER_START("force");
for(int i = 0; i < param.ntimes; i++) {
computeForce(&param, atom, &neighbor);
}
LIKWID_MARKER_STOP("force");
E = getTimeStamp();
double T_accum = E-S;
const double atoms_updates_per_sec = (double)(atom->Nlocal * INTERNAL_LOOP_NTIMES * param.ntimes) / T_accum;
const double cycles_per_atom = T_accum * freq / (double)(atom->Nlocal * param.ntimes * INTERNAL_LOOP_NTIMES);
const double cycles_per_neigh = cycles_per_atom / (double)(atoms_per_unit_cell - 1);
if(!csv) {
printf("Total time: %.4f, Mega atom updates/s: %.4f\n", T_accum, atoms_updates_per_sec / 1.E6);
if(freq > 0.0) {
printf("Cycles per atom: %.4f, Cycles per neighbor: %.4f\n", cycles_per_atom, cycles_per_neigh);
}
} else {
printf("steps,unit cells,atoms/unit cell,total atoms,total vol.(kB),atoms vol.(kB),neigh vol.(kB),time(s),atom upds/s(M)");
if(freq > 0.0) {
printf(",cy/atom,cy/neigh");
}
printf("\n");
printf("%d,%dx%dx%d,%d,%d,%.4f,%.4f,%.4f,%.4f,%.4f",
param.ntimes, param.nx, param.ny, param.nz, atoms_per_unit_cell, atom->Nlocal,
estim_volume / 1.E3, estim_atom_volume / 1.E3, estim_neighbors_volume / 1.E3, T_accum, atoms_updates_per_sec / 1.E6);
if(freq > 0.0) {
printf(",%.4f,%.4f", cycles_per_atom, cycles_per_neigh);
}
printf("\n");
}
LIKWID_MARKER_CLOSE;
return EXIT_SUCCESS;
}