MD-Bench/lammps/cuda/pbc.cu

140 lines
5.0 KiB
Plaintext
Raw Normal View History

/*
* =======================================================================================
*
* Author: Jan Eitzinger (je), jan.eitzinger@fau.de
* Copyright (c) 2020 RRZE, University Erlangen-Nuremberg
*
* This file is part of MD-Bench.
*
* MD-Bench is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MD-Bench is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with MD-Bench. If not, see <https://www.gnu.org/licenses/>.
* =======================================================================================
*/
#include <stdlib.h>
#include <stdio.h>
//---
extern "C" {
#include <allocate.h>
#include <atom.h>
#include <cuda_atom.h>
#include <pbc.h>
#include <util.h>
}
extern int NmaxGhost;
extern int *PBCx, *PBCy, *PBCz;
static int c_NmaxGhost;
static int *c_PBCx, *c_PBCy, *c_PBCz;
__global__ void computeAtomsPbcUpdate(Atom a, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
Atom* atom = &a;
if(i >= atom->Nlocal) {
return;
}
if (atom_x(i) < 0.0) {
atom_x(i) += xprd;
} else if (atom_x(i) >= xprd) {
atom_x(i) -= xprd;
}
if (atom_y(i) < 0.0) {
atom_y(i) += yprd;
} else if (atom_y(i) >= yprd) {
atom_y(i) -= yprd;
}
if (atom_z(i) < 0.0) {
atom_z(i) += zprd;
} else if (atom_z(i) >= zprd) {
atom_z(i) -= zprd;
}
}
__global__ void computePbcUpdate(Atom a, int* PBCx, int* PBCy, int* PBCz, MD_FLOAT xprd, MD_FLOAT yprd, MD_FLOAT zprd){
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int Nghost = a.Nghost;
if(i >= Nghost) {
return;
}
Atom* atom = &a;
int *border_map = atom->border_map;
int nlocal = atom->Nlocal;
atom_x(nlocal + i) = atom_x(border_map[i]) + PBCx[i] * xprd;
atom_y(nlocal + i) = atom_y(border_map[i]) + PBCy[i] * yprd;
atom_z(nlocal + i) = atom_z(border_map[i]) + PBCz[i] * zprd;
}
/* update coordinates of ghost atoms */
/* uses mapping created in setupPbc */
void updatePbc_cuda(Atom *atom, Atom *c_atom, Parameter *param, bool doReneighbor) {
const int num_threads_per_block = get_num_threads();
if (doReneighbor) {
c_atom->Natoms = atom->Natoms;
c_atom->Nlocal = atom->Nlocal;
c_atom->Nghost = atom->Nghost;
c_atom->ntypes = atom->ntypes;
if (atom->Nmax > c_atom->Nmax){ // the number of ghost atoms has increased -> more space is needed
c_atom->Nmax = atom->Nmax;
c_atom->x = (MD_FLOAT *) reallocateGPU(c_atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3);
c_atom->type = (int *) reallocateGPU(c_atom->type, sizeof(int) * atom->Nmax);
}
memcpyToGPU(c_atom->x, atom->x, sizeof(MD_FLOAT) * atom->Nmax * 3);
memcpyToGPU(c_atom->type, atom->type, sizeof(int) * atom->Nmax);
if(c_NmaxGhost < NmaxGhost) {
c_NmaxGhost = NmaxGhost;
c_PBCx = (int *) reallocateGPU(c_PBCx, NmaxGhost * sizeof(int));
c_PBCy = (int *) reallocateGPU(c_PBCy, NmaxGhost * sizeof(int));
c_PBCz = (int *) reallocateGPU(c_PBCz, NmaxGhost * sizeof(int));
c_atom->border_map = (int *) reallocateGPU(c_atom->border_map, NmaxGhost * sizeof(int));
}
memcpyToGPU(c_PBCx, PBCx, NmaxGhost * sizeof(int));
memcpyToGPU(c_PBCy, PBCy, NmaxGhost * sizeof(int));
memcpyToGPU(c_PBCz, PBCz, NmaxGhost * sizeof(int));
memcpyToGPU(c_atom->border_map, atom->border_map, NmaxGhost * sizeof(int));
}
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nghost / (float)num_threads_per_block);
computePbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, c_PBCx, c_PBCy, c_PBCz, xprd, yprd, zprd);
cuda_assert("computePbcUpdate", cudaPeekAtLastError());
cuda_assert("computePbcUpdate", cudaDeviceSynchronize());
}
void updateAtomsPbc_cuda(Atom* atom, Atom *c_atom, Parameter *param) {
const int num_threads_per_block = get_num_threads();
MD_FLOAT xprd = param->xprd;
MD_FLOAT yprd = param->yprd;
MD_FLOAT zprd = param->zprd;
const int num_blocks = ceil((float)atom->Nlocal / (float)num_threads_per_block);
computeAtomsPbcUpdate<<<num_blocks, num_threads_per_block>>>(*c_atom, xprd, yprd, zprd);
cuda_assert("computeAtomsPbcUpdate", cudaPeekAtLastError());
cuda_assert("computeAtomsPbcUpdate", cudaDeviceSynchronize());
memcpyFromGPU(atom->x, c_atom->x, sizeof(MD_FLOAT) * atom->Nlocal * 3);
}