MD-Bench/gromacs/cuda/force_lj_sup.cu

289 lines
13 KiB
Plaintext
Raw Normal View History

extern "C" {
#include <stdio.h>
//---
#include <cuda.h>
#include <driver_types.h>
//---
#include <likwid-marker.h>
//---
#include <atom.h>
#include <device.h>
#include <neighbor.h>
#include <parameter.h>
#include <stats.h>
#include <timing.h>
#include <util.h>
}
extern "C" {
extern MD_FLOAT *cuda_cl_x;
extern MD_FLOAT *cuda_cl_v;
extern MD_FLOAT *cuda_cl_f;
extern int *cuda_neighbors;
extern int *cuda_numneigh;
extern int *cuda_natoms;
extern int *natoms;
extern int *ngatoms;
extern int *cuda_border_map;
extern int *cuda_jclusters_natoms;
extern MD_FLOAT *cuda_bbminx, *cuda_bbmaxx;
extern MD_FLOAT *cuda_bbminy, *cuda_bbmaxy;
extern MD_FLOAT *cuda_bbminz, *cuda_bbmaxz;
extern int *cuda_PBCx, *cuda_PBCy, *cuda_PBCz;
extern int isReneighboured;
extern int *cuda_iclusters;
extern int *cuda_nclusters;
extern MD_FLOAT *cuda_scl_x;
extern MD_FLOAT *cuda_scl_v;
extern MD_FLOAT *cuda_scl_f;
}
#ifdef USE_SUPER_CLUSTERS
extern "C"
void alignDataToSuperclusters(Atom *atom) {
for (int sci = 0; sci < atom->Nsclusters_local; sci++) {
const unsigned int scl_offset = sci * SCLUSTER_SIZE * 3 * CLUSTER_M;
for (int ci = 0, scci = scl_offset; ci < atom->siclusters[sci].nclusters; ci++, scci += CLUSTER_M) {
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
MD_FLOAT *ci_v = &atom->cl_v[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
MD_FLOAT *ci_f = &atom->cl_f[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
/*
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
MD_FLOAT *ci_v = &atom->cl_v[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
MD_FLOAT *ci_f = &atom->cl_f[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
*/
memcpy(&atom->scl_x[scci], &ci_x[0], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&atom->scl_x[scci + SCLUSTER_SIZE * CLUSTER_M], &ci_x[0 + CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&atom->scl_x[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], &ci_x[0 + 2 * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&atom->scl_v[scci], &ci_v[0], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&atom->scl_v[scci + SCLUSTER_SIZE * CLUSTER_M], &ci_v[0 + CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&atom->scl_v[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], &ci_v[0 + 2 * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&atom->scl_f[scci], &ci_f[0], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&atom->scl_f[scci + SCLUSTER_SIZE * CLUSTER_M], &ci_f[0 + CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&atom->scl_f[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], &ci_f[0 + 2 * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
}
}
}
extern "C"
void alignDataFromSuperclusters(Atom *atom) {
for (int sci = 0; sci < atom->Nsclusters_local; sci++) {
const unsigned int scl_offset = sci * SCLUSTER_SIZE * 3 * CLUSTER_M;
for (int ci = 0, scci = scl_offset; ci < atom->siclusters[sci].nclusters; ci++, scci += CLUSTER_M) {
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
MD_FLOAT *ci_v = &atom->cl_v[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
MD_FLOAT *ci_f = &atom->cl_f[CI_VECTOR_BASE_INDEX(atom->icluster_idx[SCLUSTER_SIZE * sci + ci])];
/*
MD_FLOAT *ci_x = &atom->cl_x[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
MD_FLOAT *ci_v = &atom->cl_v[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
MD_FLOAT *ci_f = &atom->cl_f[CI_VECTOR_BASE_INDEX(atom->siclusters[sci].iclusters[ci])];
*/
memcpy(&ci_x[0], &atom->scl_x[scci], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&ci_x[0 + CLUSTER_M], &atom->scl_x[scci + SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&ci_x[0 + 2 * CLUSTER_M], &atom->scl_x[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&ci_v[0], &atom->scl_v[scci], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&ci_v[0 + CLUSTER_M], &atom->scl_v[scci + SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&ci_v[0 + 2 * CLUSTER_M], &atom->scl_v[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&ci_f[0], &atom->scl_f[scci], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&ci_f[0 + CLUSTER_M], &atom->scl_f[scci + SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
memcpy(&ci_f[0 + 2 * CLUSTER_M], &atom->scl_f[scci + 2 * SCLUSTER_SIZE * CLUSTER_M], CLUSTER_M * sizeof(MD_FLOAT));
}
}
}
__global__ void cudaInitialIntegrateSup_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_cl_v, MD_FLOAT *cuda_cl_f,
int *cuda_nclusters,
int *cuda_natoms,
int Nsclusters_local, MD_FLOAT dtforce, MD_FLOAT dt) {
unsigned int sci_pos = blockDim.x * blockIdx.x + threadIdx.x;
//unsigned int cii_pos = blockDim.y * blockIdx.y + threadIdx.y;
if (sci_pos >= Nsclusters_local) return;
//unsigned int ci_pos = cii_pos / CLUSTER_M;
//unsigned int scii_pos = cii_pos % CLUSTER_M;
//if (ci_pos >= cuda_nclusters[sci_pos]) return;
//if (scii_pos >= cuda_natoms[ci_pos]) return;
int ci_vec_base = SCI_VECTOR_BASE_INDEX(sci_pos);
MD_FLOAT *ci_x = &cuda_cl_x[ci_vec_base];
MD_FLOAT *ci_v = &cuda_cl_v[ci_vec_base];
MD_FLOAT *ci_f = &cuda_cl_f[ci_vec_base];
for (int scii_pos = 0; scii_pos < SCLUSTER_M; scii_pos++) {
ci_v[SCL_X_OFFSET + scii_pos] += dtforce * ci_f[SCL_X_OFFSET + scii_pos];
ci_v[SCL_Y_OFFSET + scii_pos] += dtforce * ci_f[SCL_Y_OFFSET + scii_pos];
ci_v[SCL_Z_OFFSET + scii_pos] += dtforce * ci_f[SCL_Z_OFFSET + scii_pos];
ci_x[SCL_X_OFFSET + scii_pos] += dt * ci_v[SCL_X_OFFSET + scii_pos];
ci_x[SCL_Y_OFFSET + scii_pos] += dt * ci_v[SCL_Y_OFFSET + scii_pos];
ci_x[SCL_Z_OFFSET + scii_pos] += dt * ci_v[SCL_Z_OFFSET + scii_pos];
}
}
__global__ void cudaFinalIntegrateSup_warp(MD_FLOAT *cuda_cl_v, MD_FLOAT *cuda_cl_f,
int *cuda_nclusters, int *cuda_natoms,
int Nsclusters_local, MD_FLOAT dtforce) {
unsigned int sci_pos = blockDim.x * blockIdx.x + threadIdx.x;
//unsigned int cii_pos = blockDim.y * blockIdx.y + threadIdx.y;
if (sci_pos >= Nsclusters_local) return;
//unsigned int ci_pos = cii_pos / CLUSTER_M;
//unsigned int scii_pos = cii_pos % CLUSTER_M;
//if (ci_pos >= cuda_nclusters[sci_pos]) return;
//if (scii_pos >= cuda_natoms[ci_pos]) return;
int ci_vec_base = SCI_VECTOR_BASE_INDEX(sci_pos);
MD_FLOAT *ci_v = &cuda_cl_v[ci_vec_base];
MD_FLOAT *ci_f = &cuda_cl_f[ci_vec_base];
for (int scii_pos = 0; scii_pos < SCLUSTER_M; scii_pos++) {
ci_v[SCL_X_OFFSET + scii_pos] += dtforce * ci_f[SCL_X_OFFSET + scii_pos];
ci_v[SCL_Y_OFFSET + scii_pos] += dtforce * ci_f[SCL_Y_OFFSET + scii_pos];
ci_v[SCL_Z_OFFSET + scii_pos] += dtforce * ci_f[SCL_Z_OFFSET + scii_pos];
}
}
__global__ void computeForceLJSup_cuda_warp(MD_FLOAT *cuda_cl_x, MD_FLOAT *cuda_cl_f,
int *cuda_nclusters, int *cuda_iclusters,
int Nsclusters_local,
int *cuda_numneigh, int *cuda_neighs, int half_neigh, int maxneighs,
MD_FLOAT cutforcesq, MD_FLOAT sigma6, MD_FLOAT epsilon) {
unsigned int sci_pos = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int scii_pos = blockDim.y * blockIdx.y + threadIdx.y;
unsigned int cjj_pos = blockDim.z * blockIdx.z + threadIdx.z;
if ((sci_pos >= Nsclusters_local) || (scii_pos >= SCLUSTER_M) || (cjj_pos >= CLUSTER_N)) return;
unsigned int ci_pos = scii_pos / CLUSTER_M;
unsigned int cii_pos = scii_pos % CLUSTER_M;
if (ci_pos >= cuda_nclusters[sci_pos]) return;
int ci_cj0 = CJ0_FROM_CI(ci_pos);
int ci_vec_base = SCI_VECTOR_BASE_INDEX(sci_pos);
MD_FLOAT *ci_x = &cuda_cl_x[ci_vec_base];
MD_FLOAT *ci_f = &cuda_cl_f[ci_vec_base];
//int numneighs = cuda_numneigh[ci_pos];
int numneighs = cuda_numneigh[cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos]];
for(int k = 0; k < numneighs; k++) {
2023-05-09 00:44:37 +02:00
int glob_j = (&cuda_neighs[cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos] * maxneighs])[k];
int scj = glob_j / SCLUSTER_SIZE;
// TODO Make cj accessible from super cluster data alignment (not reachable right now)
2023-05-09 00:44:37 +02:00
int cj = SCJ_VECTOR_BASE_INDEX(scj) + CLUSTER_M * (glob_j % SCLUSTER_SIZE);
int cj_vec_base = cj;
MD_FLOAT *cj_x = &cuda_cl_x[cj_vec_base];
MD_FLOAT *cj_f = &cuda_cl_f[cj_vec_base];
MD_FLOAT xtmp = ci_x[SCL_CL_X_OFFSET(ci_pos) + cii_pos];
MD_FLOAT ytmp = ci_x[SCL_CL_Y_OFFSET(ci_pos) + cii_pos];
MD_FLOAT ztmp = ci_x[SCL_CL_Z_OFFSET(ci_pos) + cii_pos];
MD_FLOAT fix = 0;
MD_FLOAT fiy = 0;
MD_FLOAT fiz = 0;
2023-05-09 00:44:37 +02:00
//int cond = ci_cj0 != cj || cii_pos != cjj_pos || scj != sci_pos;
int cond = (glob_j != cuda_iclusters[SCLUSTER_SIZE * sci_pos + ci_pos] && cii_pos != cjj_pos);
if(cond) {
MD_FLOAT delx = xtmp - cj_x[SCL_CL_X_OFFSET(ci_pos) + cjj_pos];
MD_FLOAT dely = ytmp - cj_x[SCL_CL_Y_OFFSET(ci_pos) + cjj_pos];
MD_FLOAT delz = ztmp - cj_x[SCL_CL_Z_OFFSET(ci_pos) + cjj_pos];
MD_FLOAT rsq = delx * delx + dely * dely + delz * delz;
if(rsq < cutforcesq) {
MD_FLOAT sr2 = 1.0 / rsq;
MD_FLOAT sr6 = sr2 * sr2 * sr2 * sigma6;
MD_FLOAT force = 48.0 * sr6 * (sr6 - 0.5) * sr2 * epsilon;
if(half_neigh) {
atomicAdd(&cj_f[SCL_CL_X_OFFSET(ci_pos) + cjj_pos], -delx * force);
atomicAdd(&cj_f[SCL_CL_Y_OFFSET(ci_pos) + cjj_pos], -dely * force);
atomicAdd(&cj_f[SCL_CL_Z_OFFSET(ci_pos) + cjj_pos], -delz * force);
}
fix += delx * force;
fiy += dely * force;
fiz += delz * force;
atomicAdd(&ci_f[SCL_CL_X_OFFSET(ci_pos) + cii_pos], fix);
atomicAdd(&ci_f[SCL_CL_Y_OFFSET(ci_pos) + cii_pos], fiy);
atomicAdd(&ci_f[SCL_CL_Z_OFFSET(ci_pos) + cii_pos], fiz);
}
}
}
}
extern "C"
double computeForceLJSup_cuda(Parameter *param, Atom *atom, Neighbor *neighbor, Stats *stats) {
DEBUG_MESSAGE("computeForceLJSup_cuda start\r\n");
MD_FLOAT cutforcesq = param->cutforce * param->cutforce;
MD_FLOAT sigma6 = param->sigma6;
MD_FLOAT epsilon = param->epsilon;
memsetGPU(cuda_cl_f, 0, atom->Nclusters_max * CLUSTER_M * 3 * sizeof(MD_FLOAT));
if (isReneighboured) {
for(int ci = 0; ci < atom->Nclusters_local; ci++) {
memcpyToGPU(&cuda_numneigh[ci], &neighbor->numneigh[ci], sizeof(int));
memcpyToGPU(&cuda_neighbors[ci * neighbor->maxneighs], &neighbor->neighbors[ci * neighbor->maxneighs], neighbor->numneigh[ci] * sizeof(int));
}
for(int sci = 0; sci < atom->Nsclusters_local; sci++) {
memcpyToGPU(&cuda_nclusters[sci], &atom->siclusters[sci].nclusters, sizeof(int));
//memcpyToGPU(&cuda_iclusters[sci * SCLUSTER_SIZE], &atom->siclusters[sci].iclusters, sizeof(int) * atom->siclusters[sci].nclusters);
}
memcpyToGPU(cuda_iclusters, atom->icluster_idx, atom->Nsclusters_max * SCLUSTER_SIZE * sizeof(int));
isReneighboured = 0;
}
const int threads_num = 1;
dim3 block_size = dim3(threads_num, SCLUSTER_M, CLUSTER_N);
dim3 grid_size = dim3(atom->Nsclusters_local/threads_num+1, 1, 1);
double S = getTimeStamp();
LIKWID_MARKER_START("force");
computeForceLJSup_cuda_warp<<<grid_size, block_size>>>(cuda_scl_x, cuda_scl_f,
cuda_nclusters, cuda_iclusters,
atom->Nsclusters_local,
cuda_numneigh, cuda_neighbors,
neighbor->half_neigh, neighbor->maxneighs, cutforcesq,
sigma6, epsilon);
cuda_assert("computeForceLJ_cuda", cudaPeekAtLastError());
cuda_assert("computeForceLJ_cuda", cudaDeviceSynchronize());
LIKWID_MARKER_STOP("force");
double E = getTimeStamp();
DEBUG_MESSAGE("computeForceLJSup_cuda stop\r\n");
return E-S;
}
#endif //USE_SUPER_CLUSTERS