2025-05-07 10:26:01 +02:00

235 lines
7.2 KiB
C

/* Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
* All rights reserved.
* Use of this source code is governed by a MIT-style
* license that can be found in the LICENSE file. */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "allocate.h"
#include "parameter.h"
#include "solver.h"
#include <omp.h>
#include <stddef.h>
#define PI 3.14159265358979323846
#define P(i, j) p[(i) * (jmax + 2) + (j)]
#define RHS(i, j) rhs[(i) * (jmax + 2) + (j)]
void omp_create_dim(int num_threads, int* dim)
{
int center_int = (int)sqrt(num_threads);
dim[0] = num_threads;
dim[1] = 1;
for (int num = center_int; num != 1; num--)
if (num_threads % num == 0) {
dim[0] = num;
dim[1] = num_threads / num;
break;
}
}
int distribute_dim(int dim_rank, int dim_comm_size, int dim_size)
{
int base_size = dim_size / dim_comm_size;
return dim_rank < (dim_size % dim_comm_size) ? base_size + 1 : base_size;
}
int get_dim_start(int dim_rank, int dim_comm_size, int dim_size)
{
int dim_start = 0;
for (int i = 0; i < dim_rank; i++)
dim_start += distribute_dim(i, dim_comm_size, dim_size);
return dim_start;
}
int get_x_choord(const int proc_num, const int const* dims) { return proc_num / dims[1]; }
int get_y_choord(const int proc_num, const int const* dims) { return proc_num % dims[1]; }
void initSolver(Solver* solver, Parameter* params, int problem)
{
solver->imax = params->imax;
solver->jmax = params->jmax;
solver->dx = params->xlength / params->imax;
solver->dy = params->ylength / params->jmax;
solver->eps = params->eps;
solver->omega = params->omg;
solver->rho = params->rho;
solver->itermax = params->itermax;
int imax = solver->imax;
int jmax = solver->jmax;
size_t bytesize = (imax + 2) * (jmax + 2) * sizeof(double);
solver->p = allocate(64, bytesize);
solver->rhs = allocate(64, bytesize);
double dx = solver->dx;
double dy = solver->dy;
double* p = solver->p;
double* rhs = solver->rhs;
int dim[2] = { 0 };
int num_threads = 1;
#pragma omp parallel
{
#pragma omp critical
num_threads = omp_get_num_threads();
}
omp_create_dim(num_threads, dim);
printf("%d: { %d, %d}\n", num_threads, dim[0], dim[1]);
#pragma omp parallel
{
int jsw, isw;
double local_res = 0.0;
int li_start = get_dim_start(get_x_choord(omp_get_thread_num(), dim),
dim[0],
solver->imax);
int lj_start = get_dim_start(get_y_choord(omp_get_thread_num(), dim),
dim[1],
solver->jmax);
int limax = li_start + distribute_dim(get_x_choord(omp_get_thread_num(), dim),
dim[0],
solver->imax);
int ljmax = lj_start + distribute_dim(get_y_choord(omp_get_thread_num(), dim),
dim[1],
solver->jmax);
for (int i = li_start; i < limax + 2; i++) {
for (int j = lj_start; j < ljmax + 2; j++) {
P(i, j) = sin(2.0 * PI * i * dx * 2.0) + sin(2.0 * PI * j * dy * 2.0);
}
}
if (problem == 2) {
for (int i = li_start; i < limax + 2; i++) {
for (int j = lj_start; j < ljmax + 2; j++) {
RHS(i, j) = sin(2.0 * PI * i * dx);
}
}
} else {
for (int i = li_start; i < limax + 2; i++) {
for (int j = lj_start; j < ljmax + 2; j++) {
RHS(i, j) = 0.0;
}
}
}
}
}
void solveRB(Solver* solver)
{
const int imax = solver->imax;
const int jmax = solver->jmax;
const int itermax = solver->itermax;
const double epssq = solver->eps * solver->eps;
const double dx2 = solver->dx * solver->dx;
const double dy2 = solver->dy * solver->dy;
const double idx2 = 1.0 / dx2;
const double idy2 = 1.0 / dy2;
const double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
double* __restrict p = solver->p;
double* __restrict rhs = solver->rhs;
int dim[2] = { 0 };
#pragma omp parallel
#pragma omp single
{
omp_create_dim(omp_get_num_threads(), dim);
}
double res = 0.0;
#pragma omp parallel shared(res)
{
const int tid = omp_get_thread_num();
const int li_start = get_dim_start(get_x_choord(tid, dim), dim[0], imax);
const int lj_start = get_dim_start(get_y_choord(tid, dim), dim[1], jmax);
const int limax = li_start + distribute_dim(get_x_choord(tid, dim), dim[0], imax);
const int ljmax = lj_start + distribute_dim(get_y_choord(tid, dim), dim[1], jmax);
for (int it = 0; it < itermax; ++it) {
#pragma omp single
{
res = 0;
}
double local_res = 0;
int jsw = ((li_start) % 2 == 0) == ((lj_start) % 2 == 0) ? 1 : 2;
for (int pass = 0; pass < 2; ++pass) {
int isw = jsw;
for (int i = li_start + 1; i < limax + 1; ++i) {
for (int j = lj_start + isw; j < ljmax + 1; j += 2) {
double r = RHS(i, j) -
((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
(P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) *
idy2);
P(i, j) -= factor * r;
local_res += r * r; /* reduction variable */
}
isw = 3 - isw;
}
#pragma omp barrier
jsw = 3 - jsw;
}
#pragma omp critical
{
res += local_res;
}
if (lj_start == 0)
for (int i = li_start + 1; i < limax + 1; i++)
P(i, 0) = P(i, 1);
if (ljmax == jmax)
for (int i = li_start + 1; i < limax + 1; i++)
P(i, ljmax + 1) = P(i, ljmax);
if (li_start == 0)
for (int j = lj_start + 1; j < ljmax + 1; j++)
P(0, j) = P(1, j);
if (limax == imax)
for (int j = lj_start + 1; j < ljmax + 1; j++)
P(limax + 1, j) = P(limax, j);
#pragma omp single
{
res /= (double)(imax * jmax);
#ifdef DEBUG
printf("%d Residuum: %e\n", it, res);
#endif
}
#pragma omp barrier
if (res < epssq) {
break;
}
#pragma omp barrier
}
}
printf("Solver reached itermax (%d) with residual %e\n", itermax, sqrt(res));
}
void writeResult(Solver* solver, char* filename)
{
int imax = solver->imax;
int jmax = solver->jmax;
double* p = solver->p;
FILE* fp;
fp = fopen(filename, "w");
if (fp == NULL) {
printf("Error!\n");
exit(EXIT_FAILURE);
}
for (int i = 1; i < imax + 1; i++) {
for (int j = 1; j < jmax + 1; j++) {
fprintf(fp, "%f ", P(i, j));
}
fprintf(fp, "\n");
}
fclose(fp);
}