NuSiF-Solver/BasicSolver/2D-seq/src/discretization.c

436 lines
12 KiB
C

/*
* Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
* All rights reserved. This file is part of nusif-solver.
* Use of this source code is governed by a MIT style
* license that can be found in the LICENSE file.
*/
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "allocate.h"
#include "discretization.h"
#include "parameter.h"
#include "util.h"
static void print(Discretization* d, double* grid)
{
int imax = d->grid.imax;
for (int j = 0; j < d->grid.jmax + 2; j++) {
printf("%02d: ", j);
for (int i = 0; i < d->grid.imax + 2; i++) {
printf("%12.8f ", grid[j * (imax + 2) + i]);
}
printf("\n");
}
fflush(stdout);
}
static void printConfig(Discretization* d)
{
printf("Parameters for #%s#\n", d->problem);
printf("Boundary conditions Left:%d Right:%d Bottom:%d Top:%d\n",
d->bcLeft,
d->bcRight,
d->bcBottom,
d->bcTop);
printf("\tReynolds number: %.2f\n", d->re);
printf("\tGx Gy: %.2f %.2f\n", d->gx, d->gy);
printf("Geometry data:\n");
printf("\tDomain box size (x, y): %.2f, %.2f\n", d->grid.xlength, d->grid.ylength);
printf("\tCells (x, y): %d, %d\n", d->grid.imax, d->grid.jmax);
printf("Timestep parameters:\n");
printf("\tDefault stepsize: %.2f, Final time %.2f\n", d->dt, d->te);
printf("\tdt bound: %.6f\n", d->dtBound);
printf("\tTau factor: %.2f\n", d->tau);
printf("Iterative d parameters:\n");
printf("\tgamma factor: %f\n", d->gamma);
}
void initDiscretization(Discretization* d, Parameter* p)
{
d->problem = p->name;
d->bcLeft = p->bcLeft;
d->bcRight = p->bcRight;
d->bcBottom = p->bcBottom;
d->bcTop = p->bcTop;
d->grid.imax = p->imax;
d->grid.jmax = p->jmax;
d->grid.xlength = p->xlength;
d->grid.ylength = p->ylength;
d->grid.dx = p->xlength / p->imax;
d->grid.dy = p->ylength / p->jmax;
d->re = p->re;
d->gx = p->gx;
d->gy = p->gy;
d->dt = p->dt;
d->te = p->te;
d->tau = p->tau;
d->gamma = p->gamma;
int imax = d->grid.imax;
int jmax = d->grid.jmax;
size_t size = (imax + 2) * (jmax + 2) * sizeof(double);
d->u = allocate(64, size);
d->v = allocate(64, size);
d->p = allocate(64, size);
d->rhs = allocate(64, size);
d->f = allocate(64, size);
d->g = allocate(64, size);
for (int i = 0; i < (imax + 2) * (jmax + 2); i++) {
d->u[i] = p->u_init;
d->v[i] = p->v_init;
d->p[i] = p->p_init;
d->rhs[i] = 0.0;
d->f[i] = 0.0;
d->g[i] = 0.0;
}
double dx = d->grid.dx;
double dy = d->grid.dy;
double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy);
d->dtBound = 0.5 * d->re * 1.0 / invSqrSum;
#ifdef VERBOSE
printConfig(d);
#endif
}
void computeRHS(Discretization* d)
{
int imax = d->grid.imax;
int jmax = d->grid.jmax;
double idx = 1.0 / d->grid.dx;
double idy = 1.0 / d->grid.dy;
double idt = 1.0 / d->dt;
double* rhs = d->rhs;
double* f = d->f;
double* g = d->g;
for (int j = 1; j < jmax + 1; j++) {
for (int i = 1; i < imax + 1; i++) {
RHS(i, j) = idt *
((F(i, j) - F(i - 1, j)) * idx + (G(i, j) - G(i, j - 1)) * idy);
}
}
}
static double maxElement(Discretization* d, double* m)
{
int size = (d->grid.imax + 2) * (d->grid.jmax + 2);
double maxval = DBL_MIN;
for (int i = 0; i < size; i++) {
maxval = MAX(maxval, fabs(m[i]));
}
return maxval;
}
void normalizePressure(Discretization* d)
{
int size = (d->grid.imax + 2) * (d->grid.jmax + 2);
double* p = d->p;
double avgP = 0.0;
for (int i = 0; i < size; i++) {
avgP += p[i];
}
avgP /= size;
for (int i = 0; i < size; i++) {
p[i] = p[i] - avgP;
}
}
void computeTimestep(Discretization* d)
{
double dt = d->dtBound;
double dx = d->grid.dx;
double dy = d->grid.dy;
double umax = maxElement(d, d->u);
double vmax = maxElement(d, d->v);
if (umax > 0) {
dt = (dt > dx / umax) ? dx / umax : dt;
}
if (vmax > 0) {
dt = (dt > dy / vmax) ? dy / vmax : dt;
}
d->dt = dt * d->tau;
}
void setBoundaryConditions(Discretization* d)
{
int imax = d->grid.imax;
int jmax = d->grid.jmax;
double* u = d->u;
double* v = d->v;
// Left boundary
switch (d->bcLeft) {
case NOSLIP:
for (int j = 1; j < jmax + 1; j++) {
U(0, j) = 0.0;
V(0, j) = -V(1, j);
}
break;
case SLIP:
for (int j = 1; j < jmax + 1; j++) {
U(0, j) = 0.0;
V(0, j) = V(1, j);
}
break;
case OUTFLOW:
for (int j = 1; j < jmax + 1; j++) {
U(0, j) = U(1, j);
V(0, j) = V(1, j);
}
break;
case PERIODIC:
break;
}
// Right boundary
switch (d->bcRight) {
case NOSLIP:
for (int j = 1; j < jmax + 1; j++) {
U(imax, j) = 0.0;
V(imax + 1, j) = -V(imax, j);
}
break;
case SLIP:
for (int j = 1; j < jmax + 1; j++) {
U(imax, j) = 0.0;
V(imax + 1, j) = V(imax, j);
}
break;
case OUTFLOW:
for (int j = 1; j < jmax + 1; j++) {
U(imax, j) = U(imax - 1, j);
V(imax + 1, j) = V(imax, j);
}
break;
case PERIODIC:
break;
}
// Bottom boundary
switch (d->bcBottom) {
case NOSLIP:
for (int i = 1; i < imax + 1; i++) {
V(i, 0) = 0.0;
U(i, 0) = -U(i, 1);
}
break;
case SLIP:
for (int i = 1; i < imax + 1; i++) {
V(i, 0) = 0.0;
U(i, 0) = U(i, 1);
}
break;
case OUTFLOW:
for (int i = 1; i < imax + 1; i++) {
U(i, 0) = U(i, 1);
V(i, 0) = V(i, 1);
}
break;
case PERIODIC:
break;
}
// Top boundary
switch (d->bcTop) {
case NOSLIP:
for (int i = 1; i < imax + 1; i++) {
V(i, jmax) = 0.0;
U(i, jmax + 1) = -U(i, jmax);
}
break;
case SLIP:
for (int i = 1; i < imax + 1; i++) {
V(i, jmax) = 0.0;
U(i, jmax + 1) = U(i, jmax);
}
break;
case OUTFLOW:
for (int i = 1; i < imax + 1; i++) {
U(i, jmax + 1) = U(i, jmax);
V(i, jmax) = V(i, jmax - 1);
}
break;
case PERIODIC:
break;
}
}
void setSpecialBoundaryCondition(Discretization* d)
{
int imax = d->grid.imax;
int jmax = d->grid.jmax;
double mDy = d->grid.dy;
double* u = d->u;
if (strcmp(d->problem, "dcavity") == 0) {
for (int i = 1; i < imax; i++) {
U(i, jmax + 1) = 2.0 - U(i, jmax);
}
} else if (strcmp(d->problem, "canal") == 0) {
double ylength = d->grid.ylength;
double y;
for (int j = 1; j < jmax + 1; j++) {
y = mDy * (j - 0.5);
U(0, j) = y * (ylength - y) * 4.0 / (ylength * ylength);
}
}
}
void computeFG(Discretization* d)
{
double* u = d->u;
double* v = d->v;
double* f = d->f;
double* g = d->g;
int imax = d->grid.imax;
int jmax = d->grid.jmax;
double gx = d->gx;
double gy = d->gy;
double gamma = d->gamma;
double dt = d->dt;
double inverseRe = 1.0 / d->re;
double inverseDx = 1.0 / d->grid.dx;
double inverseDy = 1.0 / d->grid.dy;
double du2dx, dv2dy, duvdx, duvdy;
double du2dx2, du2dy2, dv2dx2, dv2dy2;
for (int j = 1; j < jmax + 1; j++) {
for (int i = 1; i < imax + 1; i++) {
du2dx = inverseDx * 0.25 *
((U(i, j) + U(i + 1, j)) * (U(i, j) + U(i + 1, j)) -
(U(i, j) + U(i - 1, j)) * (U(i, j) + U(i - 1, j))) +
gamma * inverseDx * 0.25 *
(fabs(U(i, j) + U(i + 1, j)) * (U(i, j) - U(i + 1, j)) +
fabs(U(i, j) + U(i - 1, j)) * (U(i, j) - U(i - 1, j)));
duvdy = inverseDy * 0.25 *
((V(i, j) + V(i + 1, j)) * (U(i, j) + U(i, j + 1)) -
(V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) + U(i, j - 1))) +
gamma * inverseDy * 0.25 *
(fabs(V(i, j) + V(i + 1, j)) * (U(i, j) - U(i, j + 1)) +
fabs(V(i, j - 1) + V(i + 1, j - 1)) *
(U(i, j) - U(i, j - 1)));
du2dx2 = inverseDx * inverseDx * (U(i + 1, j) - 2.0 * U(i, j) + U(i - 1, j));
du2dy2 = inverseDy * inverseDy * (U(i, j + 1) - 2.0 * U(i, j) + U(i, j - 1));
F(i, j) = U(i, j) + dt * (inverseRe * (du2dx2 + du2dy2) - du2dx - duvdy + gx);
duvdx = inverseDx * 0.25 *
((U(i, j) + U(i, j + 1)) * (V(i, j) + V(i + 1, j)) -
(U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) + V(i - 1, j))) +
gamma * inverseDx * 0.25 *
(fabs(U(i, j) + U(i, j + 1)) * (V(i, j) - V(i + 1, j)) +
fabs(U(i - 1, j) + U(i - 1, j + 1)) *
(V(i, j) - V(i - 1, j)));
dv2dy = inverseDy * 0.25 *
((V(i, j) + V(i, j + 1)) * (V(i, j) + V(i, j + 1)) -
(V(i, j) + V(i, j - 1)) * (V(i, j) + V(i, j - 1))) +
gamma * inverseDy * 0.25 *
(fabs(V(i, j) + V(i, j + 1)) * (V(i, j) - V(i, j + 1)) +
fabs(V(i, j) + V(i, j - 1)) * (V(i, j) - V(i, j - 1)));
dv2dx2 = inverseDx * inverseDx * (V(i + 1, j) - 2.0 * V(i, j) + V(i - 1, j));
dv2dy2 = inverseDy * inverseDy * (V(i, j + 1) - 2.0 * V(i, j) + V(i, j - 1));
G(i, j) = V(i, j) + dt * (inverseRe * (dv2dx2 + dv2dy2) - duvdx - dv2dy + gy);
}
}
/* ---------------------- boundary of F --------------------------- */
for (int j = 1; j < jmax + 1; j++) {
F(0, j) = U(0, j);
F(imax, j) = U(imax, j);
}
/* ---------------------- boundary of G --------------------------- */
for (int i = 1; i < imax + 1; i++) {
G(i, 0) = V(i, 0);
G(i, jmax) = V(i, jmax);
}
}
void adaptUV(Discretization* d)
{
int imax = d->grid.imax;
int jmax = d->grid.jmax;
double* p = d->p;
double* u = d->u;
double* v = d->v;
double* f = d->f;
double* g = d->g;
double factorX = d->dt / d->grid.dx;
double factorY = d->dt / d->grid.dy;
for (int j = 1; j < jmax + 1; j++) {
for (int i = 1; i < imax + 1; i++) {
U(i, j) = F(i, j) - (P(i + 1, j) - P(i, j)) * factorX;
V(i, j) = G(i, j) - (P(i, j + 1) - P(i, j)) * factorY;
}
}
}
void writeResult(Discretization* d)
{
int imax = d->grid.imax;
int jmax = d->grid.jmax;
double dx = d->grid.dx;
double dy = d->grid.dy;
double* p = d->p;
double* u = d->u;
double* v = d->v;
double x = 0.0, y = 0.0;
FILE* fp;
fp = fopen("pressure.dat", "w");
if (fp == NULL) {
printf("Error!\n");
exit(EXIT_FAILURE);
}
for (int j = 1; j < jmax + 1; j++) {
y = (double)(j - 0.5) * dy;
for (int i = 1; i < imax + 1; i++) {
x = (double)(i - 0.5) * dx;
fprintf(fp, "%.2f %.2f %f\n", x, y, P(i, j));
}
fprintf(fp, "\n");
}
fclose(fp);
fp = fopen("velocity.dat", "w");
if (fp == NULL) {
printf("Error!\n");
exit(EXIT_FAILURE);
}
for (int j = 1; j < jmax + 1; j++) {
y = dy * (j - 0.5);
for (int i = 1; i < imax + 1; i++) {
x = dx * (i - 0.5);
double velU = (U(i, j) + U(i - 1, j)) / 2.0;
double velV = (V(i, j) + V(i, j - 1)) / 2.0;
double len = sqrt((velU * velU) + (velV * velV));
fprintf(fp, "%.2f %.2f %f %f %f\n", x, y, velU, velV, len);
}
}
fclose(fp);
}