forked from moebiusband/NuSiF-Solver
436 lines
12 KiB
C
436 lines
12 KiB
C
/*
|
|
* Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
|
|
* All rights reserved. This file is part of nusif-solver.
|
|
* Use of this source code is governed by a MIT style
|
|
* license that can be found in the LICENSE file.
|
|
*/
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "allocate.h"
|
|
#include "discretization.h"
|
|
#include "parameter.h"
|
|
#include "util.h"
|
|
|
|
static void print(Discretization* d, double* grid)
|
|
{
|
|
int imax = d->grid.imax;
|
|
|
|
for (int j = 0; j < d->grid.jmax + 2; j++) {
|
|
printf("%02d: ", j);
|
|
for (int i = 0; i < d->grid.imax + 2; i++) {
|
|
printf("%12.8f ", grid[j * (imax + 2) + i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
|
|
static void printConfig(Discretization* d)
|
|
{
|
|
printf("Parameters for #%s#\n", d->problem);
|
|
printf("Boundary conditions Left:%d Right:%d Bottom:%d Top:%d\n",
|
|
d->bcLeft,
|
|
d->bcRight,
|
|
d->bcBottom,
|
|
d->bcTop);
|
|
printf("\tReynolds number: %.2f\n", d->re);
|
|
printf("\tGx Gy: %.2f %.2f\n", d->gx, d->gy);
|
|
printf("Geometry data:\n");
|
|
printf("\tDomain box size (x, y): %.2f, %.2f\n", d->grid.xlength, d->grid.ylength);
|
|
printf("\tCells (x, y): %d, %d\n", d->grid.imax, d->grid.jmax);
|
|
printf("Timestep parameters:\n");
|
|
printf("\tDefault stepsize: %.2f, Final time %.2f\n", d->dt, d->te);
|
|
printf("\tdt bound: %.6f\n", d->dtBound);
|
|
printf("\tTau factor: %.2f\n", d->tau);
|
|
printf("Iterative d parameters:\n");
|
|
printf("\tgamma factor: %f\n", d->gamma);
|
|
}
|
|
|
|
void initDiscretization(Discretization* d, Parameter* p)
|
|
{
|
|
d->problem = p->name;
|
|
d->bcLeft = p->bcLeft;
|
|
d->bcRight = p->bcRight;
|
|
d->bcBottom = p->bcBottom;
|
|
d->bcTop = p->bcTop;
|
|
d->grid.imax = p->imax;
|
|
d->grid.jmax = p->jmax;
|
|
d->grid.xlength = p->xlength;
|
|
d->grid.ylength = p->ylength;
|
|
d->grid.dx = p->xlength / p->imax;
|
|
d->grid.dy = p->ylength / p->jmax;
|
|
d->re = p->re;
|
|
d->gx = p->gx;
|
|
d->gy = p->gy;
|
|
d->dt = p->dt;
|
|
d->te = p->te;
|
|
d->tau = p->tau;
|
|
d->gamma = p->gamma;
|
|
|
|
int imax = d->grid.imax;
|
|
int jmax = d->grid.jmax;
|
|
size_t size = (imax + 2) * (jmax + 2) * sizeof(double);
|
|
d->u = allocate(64, size);
|
|
d->v = allocate(64, size);
|
|
d->p = allocate(64, size);
|
|
d->rhs = allocate(64, size);
|
|
d->f = allocate(64, size);
|
|
d->g = allocate(64, size);
|
|
|
|
for (int i = 0; i < (imax + 2) * (jmax + 2); i++) {
|
|
d->u[i] = p->u_init;
|
|
d->v[i] = p->v_init;
|
|
d->p[i] = p->p_init;
|
|
d->rhs[i] = 0.0;
|
|
d->f[i] = 0.0;
|
|
d->g[i] = 0.0;
|
|
}
|
|
|
|
double dx = d->grid.dx;
|
|
double dy = d->grid.dy;
|
|
double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy);
|
|
d->dtBound = 0.5 * d->re * 1.0 / invSqrSum;
|
|
#ifdef VERBOSE
|
|
printConfig(d);
|
|
#endif
|
|
}
|
|
|
|
void computeRHS(Discretization* d)
|
|
{
|
|
int imax = d->grid.imax;
|
|
int jmax = d->grid.jmax;
|
|
double idx = 1.0 / d->grid.dx;
|
|
double idy = 1.0 / d->grid.dy;
|
|
double idt = 1.0 / d->dt;
|
|
double* rhs = d->rhs;
|
|
double* f = d->f;
|
|
double* g = d->g;
|
|
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
RHS(i, j) = idt *
|
|
((F(i, j) - F(i - 1, j)) * idx + (G(i, j) - G(i, j - 1)) * idy);
|
|
}
|
|
}
|
|
}
|
|
|
|
static double maxElement(Discretization* d, double* m)
|
|
{
|
|
int size = (d->grid.imax + 2) * (d->grid.jmax + 2);
|
|
double maxval = DBL_MIN;
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
maxval = MAX(maxval, fabs(m[i]));
|
|
}
|
|
|
|
return maxval;
|
|
}
|
|
|
|
void normalizePressure(Discretization* d)
|
|
{
|
|
int size = (d->grid.imax + 2) * (d->grid.jmax + 2);
|
|
double* p = d->p;
|
|
double avgP = 0.0;
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
avgP += p[i];
|
|
}
|
|
avgP /= size;
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
p[i] = p[i] - avgP;
|
|
}
|
|
}
|
|
|
|
void computeTimestep(Discretization* d)
|
|
{
|
|
double dt = d->dtBound;
|
|
double dx = d->grid.dx;
|
|
double dy = d->grid.dy;
|
|
double umax = maxElement(d, d->u);
|
|
double vmax = maxElement(d, d->v);
|
|
|
|
if (umax > 0) {
|
|
dt = (dt > dx / umax) ? dx / umax : dt;
|
|
}
|
|
if (vmax > 0) {
|
|
dt = (dt > dy / vmax) ? dy / vmax : dt;
|
|
}
|
|
|
|
d->dt = dt * d->tau;
|
|
}
|
|
|
|
void setBoundaryConditions(Discretization* d)
|
|
{
|
|
int imax = d->grid.imax;
|
|
int jmax = d->grid.jmax;
|
|
double* u = d->u;
|
|
double* v = d->v;
|
|
|
|
// Left boundary
|
|
switch (d->bcLeft) {
|
|
case NOSLIP:
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
U(0, j) = 0.0;
|
|
V(0, j) = -V(1, j);
|
|
}
|
|
break;
|
|
case SLIP:
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
U(0, j) = 0.0;
|
|
V(0, j) = V(1, j);
|
|
}
|
|
break;
|
|
case OUTFLOW:
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
U(0, j) = U(1, j);
|
|
V(0, j) = V(1, j);
|
|
}
|
|
break;
|
|
case PERIODIC:
|
|
break;
|
|
}
|
|
|
|
// Right boundary
|
|
switch (d->bcRight) {
|
|
case NOSLIP:
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
U(imax, j) = 0.0;
|
|
V(imax + 1, j) = -V(imax, j);
|
|
}
|
|
break;
|
|
case SLIP:
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
U(imax, j) = 0.0;
|
|
V(imax + 1, j) = V(imax, j);
|
|
}
|
|
break;
|
|
case OUTFLOW:
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
U(imax, j) = U(imax - 1, j);
|
|
V(imax + 1, j) = V(imax, j);
|
|
}
|
|
break;
|
|
case PERIODIC:
|
|
break;
|
|
}
|
|
|
|
// Bottom boundary
|
|
switch (d->bcBottom) {
|
|
case NOSLIP:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
V(i, 0) = 0.0;
|
|
U(i, 0) = -U(i, 1);
|
|
}
|
|
break;
|
|
case SLIP:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
V(i, 0) = 0.0;
|
|
U(i, 0) = U(i, 1);
|
|
}
|
|
break;
|
|
case OUTFLOW:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
U(i, 0) = U(i, 1);
|
|
V(i, 0) = V(i, 1);
|
|
}
|
|
break;
|
|
case PERIODIC:
|
|
break;
|
|
}
|
|
|
|
// Top boundary
|
|
switch (d->bcTop) {
|
|
case NOSLIP:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
V(i, jmax) = 0.0;
|
|
U(i, jmax + 1) = -U(i, jmax);
|
|
}
|
|
break;
|
|
case SLIP:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
V(i, jmax) = 0.0;
|
|
U(i, jmax + 1) = U(i, jmax);
|
|
}
|
|
break;
|
|
case OUTFLOW:
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
U(i, jmax + 1) = U(i, jmax);
|
|
V(i, jmax) = V(i, jmax - 1);
|
|
}
|
|
break;
|
|
case PERIODIC:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void setSpecialBoundaryCondition(Discretization* d)
|
|
{
|
|
int imax = d->grid.imax;
|
|
int jmax = d->grid.jmax;
|
|
double mDy = d->grid.dy;
|
|
double* u = d->u;
|
|
|
|
if (strcmp(d->problem, "dcavity") == 0) {
|
|
for (int i = 1; i < imax; i++) {
|
|
U(i, jmax + 1) = 2.0 - U(i, jmax);
|
|
}
|
|
} else if (strcmp(d->problem, "canal") == 0) {
|
|
double ylength = d->grid.ylength;
|
|
double y;
|
|
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
y = mDy * (j - 0.5);
|
|
U(0, j) = y * (ylength - y) * 4.0 / (ylength * ylength);
|
|
}
|
|
}
|
|
}
|
|
|
|
void computeFG(Discretization* d)
|
|
{
|
|
double* u = d->u;
|
|
double* v = d->v;
|
|
double* f = d->f;
|
|
double* g = d->g;
|
|
int imax = d->grid.imax;
|
|
int jmax = d->grid.jmax;
|
|
double gx = d->gx;
|
|
double gy = d->gy;
|
|
double gamma = d->gamma;
|
|
double dt = d->dt;
|
|
double inverseRe = 1.0 / d->re;
|
|
double inverseDx = 1.0 / d->grid.dx;
|
|
double inverseDy = 1.0 / d->grid.dy;
|
|
double du2dx, dv2dy, duvdx, duvdy;
|
|
double du2dx2, du2dy2, dv2dx2, dv2dy2;
|
|
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
du2dx = inverseDx * 0.25 *
|
|
((U(i, j) + U(i + 1, j)) * (U(i, j) + U(i + 1, j)) -
|
|
(U(i, j) + U(i - 1, j)) * (U(i, j) + U(i - 1, j))) +
|
|
gamma * inverseDx * 0.25 *
|
|
(fabs(U(i, j) + U(i + 1, j)) * (U(i, j) - U(i + 1, j)) +
|
|
fabs(U(i, j) + U(i - 1, j)) * (U(i, j) - U(i - 1, j)));
|
|
|
|
duvdy = inverseDy * 0.25 *
|
|
((V(i, j) + V(i + 1, j)) * (U(i, j) + U(i, j + 1)) -
|
|
(V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) + U(i, j - 1))) +
|
|
gamma * inverseDy * 0.25 *
|
|
(fabs(V(i, j) + V(i + 1, j)) * (U(i, j) - U(i, j + 1)) +
|
|
fabs(V(i, j - 1) + V(i + 1, j - 1)) *
|
|
(U(i, j) - U(i, j - 1)));
|
|
|
|
du2dx2 = inverseDx * inverseDx * (U(i + 1, j) - 2.0 * U(i, j) + U(i - 1, j));
|
|
du2dy2 = inverseDy * inverseDy * (U(i, j + 1) - 2.0 * U(i, j) + U(i, j - 1));
|
|
F(i, j) = U(i, j) + dt * (inverseRe * (du2dx2 + du2dy2) - du2dx - duvdy + gx);
|
|
|
|
duvdx = inverseDx * 0.25 *
|
|
((U(i, j) + U(i, j + 1)) * (V(i, j) + V(i + 1, j)) -
|
|
(U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) + V(i - 1, j))) +
|
|
gamma * inverseDx * 0.25 *
|
|
(fabs(U(i, j) + U(i, j + 1)) * (V(i, j) - V(i + 1, j)) +
|
|
fabs(U(i - 1, j) + U(i - 1, j + 1)) *
|
|
(V(i, j) - V(i - 1, j)));
|
|
|
|
dv2dy = inverseDy * 0.25 *
|
|
((V(i, j) + V(i, j + 1)) * (V(i, j) + V(i, j + 1)) -
|
|
(V(i, j) + V(i, j - 1)) * (V(i, j) + V(i, j - 1))) +
|
|
gamma * inverseDy * 0.25 *
|
|
(fabs(V(i, j) + V(i, j + 1)) * (V(i, j) - V(i, j + 1)) +
|
|
fabs(V(i, j) + V(i, j - 1)) * (V(i, j) - V(i, j - 1)));
|
|
|
|
dv2dx2 = inverseDx * inverseDx * (V(i + 1, j) - 2.0 * V(i, j) + V(i - 1, j));
|
|
dv2dy2 = inverseDy * inverseDy * (V(i, j + 1) - 2.0 * V(i, j) + V(i, j - 1));
|
|
G(i, j) = V(i, j) + dt * (inverseRe * (dv2dx2 + dv2dy2) - duvdx - dv2dy + gy);
|
|
}
|
|
}
|
|
|
|
/* ---------------------- boundary of F --------------------------- */
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
F(0, j) = U(0, j);
|
|
F(imax, j) = U(imax, j);
|
|
}
|
|
|
|
/* ---------------------- boundary of G --------------------------- */
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
G(i, 0) = V(i, 0);
|
|
G(i, jmax) = V(i, jmax);
|
|
}
|
|
}
|
|
|
|
void adaptUV(Discretization* d)
|
|
{
|
|
int imax = d->grid.imax;
|
|
int jmax = d->grid.jmax;
|
|
double* p = d->p;
|
|
double* u = d->u;
|
|
double* v = d->v;
|
|
double* f = d->f;
|
|
double* g = d->g;
|
|
double factorX = d->dt / d->grid.dx;
|
|
double factorY = d->dt / d->grid.dy;
|
|
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
U(i, j) = F(i, j) - (P(i + 1, j) - P(i, j)) * factorX;
|
|
V(i, j) = G(i, j) - (P(i, j + 1) - P(i, j)) * factorY;
|
|
}
|
|
}
|
|
}
|
|
|
|
void writeResult(Discretization* d)
|
|
{
|
|
int imax = d->grid.imax;
|
|
int jmax = d->grid.jmax;
|
|
double dx = d->grid.dx;
|
|
double dy = d->grid.dy;
|
|
double* p = d->p;
|
|
double* u = d->u;
|
|
double* v = d->v;
|
|
double x = 0.0, y = 0.0;
|
|
|
|
FILE* fp;
|
|
fp = fopen("pressure.dat", "w");
|
|
|
|
if (fp == NULL) {
|
|
printf("Error!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
y = (double)(j - 0.5) * dy;
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
x = (double)(i - 0.5) * dx;
|
|
fprintf(fp, "%.2f %.2f %f\n", x, y, P(i, j));
|
|
}
|
|
fprintf(fp, "\n");
|
|
}
|
|
|
|
fclose(fp);
|
|
|
|
fp = fopen("velocity.dat", "w");
|
|
|
|
if (fp == NULL) {
|
|
printf("Error!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (int j = 1; j < jmax + 1; j++) {
|
|
y = dy * (j - 0.5);
|
|
for (int i = 1; i < imax + 1; i++) {
|
|
x = dx * (i - 0.5);
|
|
double velU = (U(i, j) + U(i - 1, j)) / 2.0;
|
|
double velV = (V(i, j) + V(i, j - 1)) / 2.0;
|
|
double len = sqrt((velU * velU) + (velV * velV));
|
|
fprintf(fp, "%.2f %.2f %f %f %f\n", x, y, velU, velV, len);
|
|
}
|
|
}
|
|
|
|
fclose(fp);
|
|
}
|