Files
IMB-Benchmarking-tools/launch_alg_bench.py
2025-11-07 14:47:12 +01:00

207 lines
6.7 KiB
Python
Executable File

import os
import subprocess
from datetime import datetime
################ HELPER FUNCTIONS ################
def load_template(template_path: str):
output_template = ""
with open(template_path, "r") as handle:
output_template = handle.read()
return output_template
def write_batch(batch_fpath: str, batch_content: str):
with open(batch_fpath, "w") as handle:
_ = handle.write(batch_content)
################### SETUP DIRS ###################
output_dir = os.getcwd()+"/output/"
err_dir = os.getcwd()+"/error/"
batch_files_dir = os.getcwd()+"/batchs/"
data_dir = os.getcwd()+"/data/"
if os.path.isdir(output_dir) == False:
os.mkdir(output_dir)
if os.path.isdir(err_dir) == False:
os.mkdir(err_dir)
if os.path.isdir(data_dir) == False:
os.mkdir(data_dir)
if os.path.isdir(batch_files_dir) == False:
os.mkdir(batch_files_dir)
################ GLOBAL DEFAULTS #################
mpi1_bin = "/home/hpc/ihpc/ihpc136h/workspace/mpi-benchmark-tool/bin/IMB-MPI1"
default_parameter = {
"time_stamp": datetime.now().strftime("%y_%m_%d_%H-%M-%S"),
"job_name": "",
"output_dir": os.getcwd()+"/output/",
"err_dir": os.getcwd()+"/error/",
"data_dir": os.getcwd()+"/data/",
"n_procs": 18,
"off_cache_flag": "",
"bin": mpi1_bin,
"n_nodes": 1
}
algs_dic = [{'name': "Allgather",
'flag': "I_MPI_ADJUST_ALLGATHER",
'algs': [
"Recursive doubling ",
"Bruck`s ",
"Ring ",
"Topology aware Gatherv + Bcast ",
"Knomial ",
]},
{'name': "Allreduce",
'flag': "I_MPI_ADJUST_ALLREDUCE",
'algs': [
"Recursive doubling ",
"Rabenseifner`s ",
"Reduce + Bcast ",
"Topology aware Reduce + Bcast ",
"Binomial gather + scatter ",
"Topology aware binominal gather + scatter ",
"Shumilin`s ring ",
"Ring ",
"Knomial ",
"Topology aware SHM-based flat ",
"Topology aware SHM-based Knomial ",
"Topology aware SHM-based Knary ",
]},
{'name': "Alltoall",
'flag': "I_MPI_ADJUST_ALLTOALL",
'algs': [
"Bruck`s ",
"Isend/Irecv + waitall ",
"Pair wise exchange ",
"Plum`s ",
]},
{'name': "Barrier",
'flag': "I_MPI_ADJUST_BARRIER",
'algs': [
"Dissemination ",
"Recursive doubling ",
"Topology aware dissemination ",
"Topology aware recursive doubling ",
"Binominal gather + scatter ",
"Topology aware binominal gather + scatter ",
"Topology aware SHM-based flat ",
"Topology aware SHM-based Knomial ",
"Topology aware SHM-based Knary ",
]},
{'name': "Bcast",
'flag': "I_MPI_ADJUST_BCAST",
'algs': [
"Binomial ",
"Recursive doubling ",
"Ring ",
"Topology aware binomial ",
"Topology aware recursive doubling ",
"Topology aware ring ",
"Shumilin`s ",
"Knomial ",
"Topology aware SHM-based flat ",
"Topology aware SHM-based Knomial ",
"Topology aware SHM-based Knary ",
"NUMA aware SHM-based (SSE4.2) ",
"NUMA aware SHM-based (AVX2) ",
"NUMA aware SHM-based (AVX512) ",
]},
{'name': "Gather",
'flag': "I_MPI_ADJUST_GATHER",
'algs': [
"Binomial ",
"Topology aware binomial ",
"Shumilin`s ",
"Binomial with segmentation ",
]},
{'name': "Reduce_scatter",
'flag': "I_MPI_ADJUST_REDUCE_SCATTER",
'algs': [
"Recursive halving ",
"Pair wise exchange ",
"Recursive doubling ",
"Reduce + Scatterv ",
"Topology aware Reduce + Scatterv ",
]},
{'name': "Reduce",
'flag': "I_MPI_ADJUST_REDUCE",
'algs': [
"Shumilin`s ",
"Binomial ",
"Topology aware Shumilin`s ",
"Topology aware binomial ",
"Rabenseifner`s ",
"Topology aware Rabenseifner`s ",
"Knomial ",
"Topology aware SHM-based flat ",
"Topology aware SHM-based Knomial ",
"Topology aware SHM-based Knary ",
"Topology aware SHM-based binomial ",
]},
{'name': "Scatter",
'flag': "I_MPI_ADJUST_SCATTER",
'algs': [
"Binomial ",
"Topology aware binomial ",
"Shumilin`s ",
]},
]
log = ""
############## MULTIPLE-NODE LAUNCH ##############
off_cache_flags = [
"-off_cache -1",
"-off_cache 50",
""
]
ndcnt = [
2,
3,
4,
5,
6,
7,
8,
9,
10
]
proc_per_node = 72
multiple_node_parameter = dict(default_parameter)
multiple_node_template = load_template("./templates/multinode_algs.template")
for flag in off_cache_flags:
multiple_node_parameter["off_cache_flag"] = flag
for n_nodes in ndcnt:
n_procs = n_nodes*proc_per_node
multiple_node_parameter["n_procs"] = int(n_procs)
multiple_node_parameter["n_nodes"] = n_nodes
for alg_conf in algs_dic:
collective = alg_conf['name']
multiple_node_parameter["job_name"] = collective
multiple_node_parameter["alg_flag"] = alg_conf['flag']
algs = alg_conf["algs"]
for idx, alg in enumerate(algs):
multiple_node_parameter["alg_name"] = alg
multiple_node_parameter["alg_idx"] = idx
batch_file = os.path.join(batch_files_dir,
f"{collective}_{alg.strip().replace('`','').replace(' ','_').replace('/','_')}.sh")
write_batch(batch_file,
multiple_node_template.format(**multiple_node_parameter))
result = subprocess.run(["sbatch", batch_file],
capture_output=True, text=True)
log += f"#{collective} {n_procs}" + "\n"
log += "\tSTDOUT:" + result.stdout + "\n"
log += "\tSTDERR:" + result.stderr + "\n"
print(log)