from matplotlib.ticker import FuncFormatter import pandas as pd import matplotlib.pyplot as plt import numpy as np from matplotlib.lines import Line2D from enum import Enum class columns (): benchmark_type = 'benchmark_type' proc_num = 'proc_num' msg_size_bytes = 'msg_size_bytes' repetitions = 'repetitions' t_min_usec = 't_min_usec' t_max_usec = 't_max_usec' t_avg_usec = 't_avg_usec' mpi_datatype = 'mpi_datatype' mpi_red_datatype = 'mpi_red_datatype' mpi_red_op = 'mpi_red_op' creation_time = 'creation_time' n_nodes = 'n_nodes' off_cache_flag = 'off_cache_flag' algorithm = 'algorithm' class collectives(Enum): Bcast = 'Bcast' Reduce = 'Reduce' Allreduce = 'Allreduce' Alltoall = 'Alltoall' Scatter = 'Scatter' Reduce_scatter = 'Reduce_scatter' Allgather = 'Allgather' Gather = 'Gather' data_file = "./data/data_04_11_25_algs.csv" df_multinode = pd.read_csv(data_file, delimiter=',') df_multinode.fillna(0, inplace=True) df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50] for c in collectives: df_single = df_multinode[df_multinode[columns.benchmark_type] == c.value] df_single = df_single[df_single[columns.msg_size_bytes] > 1000] df_single = df_single[[columns.proc_num, columns.msg_size_bytes, columns.t_avg_usec, columns.algorithm]] df_gather_best = df_single.loc[ # pyright: ignore df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore columns.t_avg_usec].idxmin() ].reset_index(drop=True) df_gather_best = df_gather_best[df_gather_best[columns.msg_size_bytes] > 2**17] pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore columns=columns.proc_num, values=columns.t_avg_usec) X = pivot_best.columns.values # proc_num Y = pivot_best.index.values # msg_size_bytes X, Y = np.meshgrid(X, Y) # pyright: ignore Z = pivot_best.values alg_pivot = df_gather_best.pivot( index=columns.msg_size_bytes, columns=columns.proc_num, values=columns.algorithm ) algorithms = alg_pivot.values.flatten() unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)])) color_map = {alg: i for i, alg in enumerate(unique_algs)} color_values = np.array([color_map.get(a, np.nan) for a in algorithms]) fig = plt.figure(figsize=(16, 9)) ax = fig.add_subplot(111, projection='3d') surf = ax.plot_wireframe(X, Y, Z, color='black', linewidths=1) surf_points = ax.scatter(X, Y, Z, c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore handles = [ Line2D([0], [0], marker='o', color='w', label=alg, markerfacecolor=plt.cm.viridis( color_map[alg] / max(len(unique_algs)-1, 1)), markersize=8) for alg in unique_algs ] ax.legend(handles=handles, title="Algorithm", loc='upper right') ax.set_xlabel("Process Count") ax.set_ylabel("Message Size [B]") ax.set_zlabel("Average Time [μs]") ax.set_title(f"{c.value}") ax.set_xticks(pivot_best.columns.values) # pyright: ignore ax.set_xticklabels(pivot_best.columns.values) ax.set_yticks(Y[:, 0]) ymin, ymax = ax.get_ylim() ax.set_ylim(ymin*0.8, ymax) # 30% more space at top ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]]) plt.savefig(f"./plots/{c.value.lower()}_algcomp.png")