import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy.optimize import curve_fit import matplotlib.cm as cm def max_transfer_size(msg_size, np_procs, benchmark_type): if benchmark_type == 'Allgather': return (np_procs-72)*msg_size elif benchmark_type == 'Scatter': return (np_procs-72)*msg_size # ? elif benchmark_type == 'Alltoall': return 72*(np_procs-72)*msg_size elif benchmark_type == 'Bcast': return msg_size elif benchmark_type == 'Gather': return (np_procs)*msg_size # ? elif benchmark_type == 'Reduce_scatter': return 0.25*(np_procs-72)*(1/72)*msg_size # ? elif benchmark_type == 'Allreduce': return 0.25*(np_procs-72)*(1/72)*msg_size elif benchmark_type == 'Reduce': return 0.25*(np_procs-72)*(1/72)*msg_size data_file = "data/data-multi-defand100cflag.csv" df_multinode = pd.read_csv(data_file, delimiter=',') df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100] benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist() benchmarks = [x for x in benchmarks if x[-1] != 'v'] print(benchmarks) df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin( benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000] df_multinode_offdef["max_transfer"] = df_multinode_offdef.apply( lambda row: max_transfer_size( msg_size=row["msg_size_bytes"], np_procs=row["proc_num"], benchmark_type=row["benchmark_type"] ), axis=1 ) df_multinode_offdef["bytes/usec"] = df_multinode_offdef["max_transfer"] / \ df_multinode_offdef["t_avg_usec"] df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type']!='Allgather'][df_multinode_offdef['benchmark_type']!='Alltoall'] df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']] plt.figure(figsize=(16, 9)) sns.barplot( data=df_multinode_offdef, x="benchmark_type", y="t_avg_usec", dodge=True, hue=df_multinode_offdef["msg_size_bytes"].astype(str), ) # plt.yscale("log") plt.title("Average Time (usec) per Benchmark Type and Message Size") plt.ylabel("Average Time (usec)") plt.xlabel("Benchmark Type") plt.xticks(rotation=45) plt.legend(title="Message Size (bytes)") plt.tight_layout() # plt.show() plt.savefig("./plots/benchmark_avg_time_barplot.png", dpi=300) plt.close()