{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "da7c16b4", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from scipy.optimize import curve_fit\n", "from matplotlib.cm import get_cmap" ] }, { "cell_type": "markdown", "id": "47341b1d", "metadata": {}, "source": [ "# Alltoall " ] }, { "cell_type": "code", "execution_count": null, "id": "1cc39aab", "metadata": {}, "outputs": [ { "ename": "", "evalue": "", "output_type": "error", "traceback": [ "\u001b[1;31mnotebook controller is DISPOSED. \n", "\u001b[1;31mView Jupyter log for further details." ] } ], "source": [ "df_multinode = pd.read_csv(\"../data/data-multi-defand100cflag.csv\",delimiter = \",\")\n", "df_multinode['benchmark_type'].unique()\n", "df_gather = df_multinode[df_multinode[\"benchmark_type\"]==\"Bcast\"][df_multinode['msg_size_bytes']>1024][df_multinode['off_cache_flag']==-1]\n", "df_gather.columns.tolist()" ] }, { "cell_type": "code", "execution_count": null, "id": "4336d3c6", "metadata": {}, "outputs": [ { "ename": "", "evalue": "", "output_type": "error", "traceback": [ "\u001b[1;31mnotebook controller is DISPOSED. \n", "\u001b[1;31mView Jupyter log for further details." ] } ], "source": [ "def model(proc_num, alpha, beta, msg_size):\n", " return (alpha * msg_size * (proc_num - 72) * 72) / (12.5 * 1e3) + 1e6*beta\n", "\n", "results = []\n", "msg_sizes = sorted(df_gather['msg_size_bytes'].unique())\n", "n_rows = int(np.ceil(len(msg_sizes) / 3))\n", "n_cols = min(len(msg_sizes), 3)\n", "fig, axes = plt.subplots(n_rows, n_cols, figsize=(5*n_cols, 4*n_rows), squeeze=False)\n", "cmap = get_cmap('tab10')\n", "\n", "for idx, (msg_size, group) in enumerate(df_gather.groupby('msg_size_bytes')):\n", " x = group['proc_num'].values.copy()\n", " y = group['t_avg_usec'].values.copy()\n", " sorted_indices = np.argsort(x)\n", " x = x[sorted_indices]\n", " y = y[sorted_indices]\n", " fit_func = lambda proc_num, alpha, beta: model(proc_num, alpha, beta, msg_size)\n", " popt, _ = curve_fit(fit_func, x, y, bounds=([1, 0], [np.inf, np.inf]))\n", " alpha, beta = popt\n", " results.append({'msg_size_bytes': msg_size, 'alpha': alpha, 'beta': beta})\n", "\n", " x_fit = np.linspace(min(x), max(x), 100)\n", " y_fit = fit_func(x_fit, alpha, beta)\n", " y_speed = model(x_fit,1,0,msg_size)\n", " row, col = divmod(idx, n_cols)\n", " ax = axes[row][col]\n", "\n", " color = cmap(idx % 10)\n", " # ax.scatter(x, y/1e6, label='Data', color=color)\n", " ax.plot(x, y/1e6, label='Data', color=color)\n", " # ax.plot(x_fit, y_fit/1e6, linestyle='--', color=color, alpha=0.5, label='Fit')\n", " # ax.plot(x_fit, y_speed/1e6, linestyle='--', color='red', alpha=0.1, label='Fit')\n", " ax.set_title(f'msg_size: {msg_size} bytes')\n", " ax.set_xlabel('num. proc.')\n", " ax.set_ylabel('Average Time [s]')\n", " ax.set_xticks(x)\n", " ax.grid(True)\n", " max_data =(x[-1]-72)*72*msg_size\n", " min_data =(x[0]-72)*72*msg_size\n", "\n", " textstr = \"\"\n", " # if(max_data > 1e9):\n", " # textstr+=f\"max data = {max_data/1e9:0.2f}GB\\n\" \n", " # else:\n", " # textstr+=f\"max data = {max_data/1e6:0.2f}MB\\n\" \n", "\n", " # if(min_data > 1e9):\n", " # textstr+=f\"min data = {min_data/1e9:0.2f}GB\\n\" \n", " # else:\n", " # textstr+=f\"min data = {min_data/1e6:0.2f}MB\\n\" \n", " # textstr += r\"$\\alpha$\" +f\"= {alpha:.3e}\\n\"+r\"$b_{eff}=$\"+f\"{12.5/alpha:0.3f}Gbps\\n\"+\\\n", " # r\"$\\beta$\"+f\"= {beta:.3e} s\"\n", " # ax.text(0.95, 0.05, textstr, transform=ax.transAxes,\n", " # fontsize=10, verticalalignment='bottom',\n", " # horizontalalignment='right',\n", " # bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))\n", "\n", "fig.suptitle('Alltoall Time Fit per Message Size\\nDots = Data Points | Dashed Lines = Fits\\n off_mem=-1', fontsize=14)\n", "fig.tight_layout(rect=[0, 0.03, 1, 0.95])\n", "# plt.savefig(\"plots/alltoall_analysis.png\",dpi=300)\n", "plt.show()\n", "\n", "fit_results = pd.DataFrame(results)\n", "fit_results['inv_alpha'] = 1 / fit_results['alpha']\n", "print(fit_results)\n" ] }, { "cell_type": "code", "execution_count": null, "id": "ce632d6f", "metadata": {}, "outputs": [ { "ename": "", "evalue": "", "output_type": "error", "traceback": [ "\u001b[1;31mnotebook controller is DISPOSED. \n", "\u001b[1;31mView Jupyter log for further details." ] } ], "source": [ "df_gather[df_gather['msg_size_bytes']==1048576]" ] } ], "metadata": { "kernelspec": { "display_name": "data", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" } }, "nbformat": 4, "nbformat_minor": 5 }