import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from mpl_toolkits.mplot3d import Axes3D data_file = "data/data-multi-defand100cflag.csv" df_multinode = pd.read_csv(data_file, delimiter=',') df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100] df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']] benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist() benchmarks = [x for x in benchmarks if x[-1] != 'v'] df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin( benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000] slow_benchmarks = ["Alltoall","Allgather"] df_multinode_offdef = df_multinode_offdef[df_multinode_offdef["benchmark_type"].isin(slow_benchmarks)] plt.figure(figsize=(16, 9)) sns.barplot( data=df_multinode_offdef, x="benchmark_type", y="t_avg_usec", dodge=True, hue=df_multinode_offdef["msg_size_bytes"].astype(str), ) plt.ylim(0) plt.title("Average Time (usec) per Benchmark Type and Message Size") plt.ylabel("Average Time (usec)") plt.xlabel("Benchmark Type") plt.xticks(rotation=45) plt.legend(title="Message Size (bytes)") plt.tight_layout() plt.savefig("./plots/sbenchmarks_avg_time_barplot.png", dpi=300) plt.close() df_alltoall = df_multinode_offdef[df_multinode_offdef['benchmark_type']=='Alltoall'] df_alltoall = df_alltoall[['msg_size_bytes','t_avg_usec','proc_num']] df_alltoall = df_alltoall[df_alltoall['msg_size_bytes']>2**17] pivot = df_alltoall.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec") X = pivot.columns.values # proc_num Y = pivot.index.values # msg_size_bytes X, Y = np.meshgrid(X, Y) Z = pivot.values fig = plt.figure(figsize=(16, 9)) ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k') cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left') cbar.set_label("Average Time (μs)") ax.set_xlabel("Process Count") ax.set_ylabel("Message Size (B)") ax.set_zlabel("Average Time (μs)") ax.set_title("Alltoall") ax.set_xticks(pivot.columns.values) # use the actual process count values ax.set_xticklabels(pivot.columns.values) ax.set_yticks(Y[:, 0]) ymin, ymax = ax.get_ylim() ax.set_ylim(ymin*0.8, ymax) # 30% more space at top ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]]) plt.tight_layout() plt.savefig("./plots/alltoall_surface.png", dpi=300) plt.close() df_allgather = df_multinode_offdef[df_multinode_offdef['benchmark_type']=='Allgather'] df_allgather = df_allgather[['msg_size_bytes','t_avg_usec','proc_num']] df_allgather = df_allgather[df_allgather['msg_size_bytes']>2**17] pivot = df_allgather.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec") X = pivot.columns.values # proc_num Y = pivot.index.values # msg_size_bytes X, Y = np.meshgrid(X, Y) Z = pivot.values fig = plt.figure(figsize=(16, 9)) ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k') cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left') cbar.set_label("Average Time (μs)") ax.set_xlabel("Process Count") ax.set_ylabel("Message Size (B)") ax.set_zlabel("Average Time (μs)") ax.set_title("Allgather") ax.set_xticks(pivot.columns.values) # use the actual process count values ax.set_xticklabels(pivot.columns.values) ax.set_yticks(Y[:, 0]) ymin, ymax = ax.get_ylim() ax.set_ylim(ymin*0.8, ymax) # 30% more space at top ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]]) plt.tight_layout() plt.savefig("./plots/allgather_surface.png", dpi=300) plt.close()