from matplotlib.ticker import FuncFormatter import pandas as pd import matplotlib.pyplot as plt import numpy as np from matplotlib.lines import Line2D from enum import Enum class columns (): benchmark_type = 'benchmark_type' proc_num = 'proc_num' msg_size_bytes = 'msg_size_bytes' repetitions = 'repetitions' t_min_usec = 't_min_usec' t_max_usec = 't_max_usec' t_avg_usec = 't_avg_usec' mpi_datatype = 'mpi_datatype' mpi_red_datatype = 'mpi_red_datatype' mpi_red_op = 'mpi_red_op' creation_time = 'creation_time' n_nodes = 'n_nodes' off_cache_flag = 'off_cache_flag' algorithm = 'algorithm' class collectives(Enum): Bcast = 'Bcast' Reduce = 'Reduce' Allreduce = 'Allreduce' Alltoall = 'Alltoall' Scatter = 'Scatter' Reduce_scatter = 'Reduce_scatter' Allgather = 'Allgather' Gather = 'Gather' def log_notation(val, pos): return f" $1e{int(val)}$" if val != 0 else "1" def log2_notation(val, pos): return "$2^{"+str(int(val))+"}$" if val != 0 else "1" data_file = "./data/data_04_11_25_algs.csv" df_multinode = pd.read_csv(data_file, delimiter=',') df_multinode.fillna(0, inplace=True) df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50] for c in collectives: df_single = df_multinode[df_multinode[columns.benchmark_type] == c.value] df_single = df_single[df_single[columns.msg_size_bytes] > 1000] df_single = df_single[[columns.proc_num, columns.msg_size_bytes, columns.t_avg_usec, columns.algorithm]] df_gather_best = df_single.loc[ # pyright: ignore df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore columns.t_avg_usec].idxmin() ].reset_index(drop=True) df_gather_worst = df_single.loc[ # pyright: ignore df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore columns.t_avg_usec].idxmax() ].reset_index(drop=True) # df_gather_select = df_gather_select[df_gather_select[columns.msg_size_bytes] > 2**17] pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore columns=columns.proc_num, values=columns.t_avg_usec) pivot_worst = df_gather_worst.pivot(index=columns.msg_size_bytes, # pyright: ignore columns=columns.proc_num, values=columns.t_avg_usec) X = pivot_best.columns.values # proc_num Y = pivot_best.index.values # msg_size_bytes X, Y = np.meshgrid(X, Y) # pyright: ignore Z = pivot_best.values X_w = pivot_worst.columns.values # proc_num Y_w = pivot_worst.index.values # msg_size_bytes X_w, Y_w = np.meshgrid(X_w, Y_w) # pyright: ignore Z_w = pivot_worst.values alg_pivot = df_gather_best.pivot( index=columns.msg_size_bytes, columns=columns.proc_num, values=columns.algorithm ) algorithms = alg_pivot.values.flatten() unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)])) color_map = {alg: i for i, alg in enumerate(unique_algs)} color_values = np.array([color_map.get(a, np.nan) for a in algorithms]) fig = plt.figure(figsize=(16, 9)) ax = fig.add_subplot(111, projection='3d') surf = ax.plot_wireframe(X, np.log2(Y), np.log(Z), color='black', linewidths=1) surf = ax.plot_wireframe(X_w, np.log2( Y_w), np.log(Z_w), color='gray', linewidths=0.3) surf_points = ax.scatter(X, np.log2( Y), np.log(Z), c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore surf_points = ax.scatter(X_w, np.log2( Y_w), np.log(Z_w), c='gray', alpha=0.2, s=20, depthshade=False) # pyright: ignore handles = [ Line2D([0], [0], marker='o', color='w', label=alg, markerfacecolor=plt.cm.viridis( color_map[alg] / max(len(unique_algs)-1, 1)), markersize=8) for alg in unique_algs ] ax.legend(handles=handles, title="Algorithm", loc='upper right') ax.set_xlabel("Process Count") ax.set_ylabel("Message Size [B] (log2)") ax.set_zlabel("Average Time [μs] (log10)") ax.set_title(f"{c.value}") ax.set_xticks(pivot_best.columns.values) # pyright: ignore ax.set_xticklabels(pivot_best.columns.values) ax.yaxis.set_major_formatter(FuncFormatter(log2_notation)) ax.zaxis.set_major_formatter(FuncFormatter(log_notation)) plt.savefig(f"./plots/{c.value.lower()}_algcomp_log.png")