Compare commits
3 Commits
results-an
...
7a54141ed9
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7a54141ed9 | ||
|
|
0e88c73183 | ||
|
|
843b15a362 |
1
.gitignore
vendored
@@ -1 +0,0 @@
|
||||
**/.DS_Store
|
||||
|
||||
@@ -1,206 +0,0 @@
|
||||
import os
|
||||
import subprocess
|
||||
from datetime import datetime
|
||||
|
||||
################ HELPER FUNCTIONS ################
|
||||
|
||||
|
||||
def load_template(template_path: str):
|
||||
output_template = ""
|
||||
with open(template_path, "r") as handle:
|
||||
output_template = handle.read()
|
||||
return output_template
|
||||
|
||||
|
||||
def write_batch(batch_fpath: str, batch_content: str):
|
||||
with open(batch_fpath, "w") as handle:
|
||||
_ = handle.write(batch_content)
|
||||
|
||||
|
||||
################### SETUP DIRS ###################
|
||||
output_dir = os.getcwd()+"/output/"
|
||||
err_dir = os.getcwd()+"/error/"
|
||||
batch_files_dir = os.getcwd()+"/batchs/"
|
||||
data_dir = os.getcwd()+"/data/"
|
||||
|
||||
if os.path.isdir(output_dir) == False:
|
||||
os.mkdir(output_dir)
|
||||
if os.path.isdir(err_dir) == False:
|
||||
os.mkdir(err_dir)
|
||||
if os.path.isdir(data_dir) == False:
|
||||
os.mkdir(data_dir)
|
||||
if os.path.isdir(batch_files_dir) == False:
|
||||
os.mkdir(batch_files_dir)
|
||||
|
||||
################ GLOBAL DEFAULTS #################
|
||||
mpi1_bin = "/home/hpc/ihpc/ihpc136h/workspace/mpi-benchmark-tool/bin/IMB-MPI1"
|
||||
default_parameter = {
|
||||
"time_stamp": datetime.now().strftime("%y_%m_%d_%H-%M-%S"),
|
||||
"job_name": "",
|
||||
"output_dir": os.getcwd()+"/output/",
|
||||
"err_dir": os.getcwd()+"/error/",
|
||||
"data_dir": os.getcwd()+"/data/",
|
||||
"n_procs": 18,
|
||||
"off_cache_flag": "",
|
||||
"bin": mpi1_bin,
|
||||
"n_nodes": 1
|
||||
}
|
||||
|
||||
algs_dic = [{'name': "Allgather",
|
||||
'flag': "I_MPI_ADJUST_ALLGATHER",
|
||||
'algs': [
|
||||
"Recursive doubling ",
|
||||
"Bruck`s ",
|
||||
"Ring ",
|
||||
"Topology aware Gatherv + Bcast ",
|
||||
"Knomial ",
|
||||
]},
|
||||
{'name': "Allreduce",
|
||||
'flag': "I_MPI_ADJUST_ALLREDUCE",
|
||||
'algs': [
|
||||
"Recursive doubling ",
|
||||
"Rabenseifner`s ",
|
||||
"Reduce + Bcast ",
|
||||
"Topology aware Reduce + Bcast ",
|
||||
"Binomial gather + scatter ",
|
||||
"Topology aware binominal gather + scatter ",
|
||||
"Shumilin`s ring ",
|
||||
"Ring ",
|
||||
"Knomial ",
|
||||
"Topology aware SHM-based flat ",
|
||||
"Topology aware SHM-based Knomial ",
|
||||
"Topology aware SHM-based Knary ",
|
||||
]},
|
||||
|
||||
{'name': "Alltoall",
|
||||
'flag': "I_MPI_ADJUST_ALLTOALL",
|
||||
'algs': [
|
||||
"Bruck`s ",
|
||||
"Isend/Irecv + waitall ",
|
||||
"Pair wise exchange ",
|
||||
"Plum`s ",
|
||||
]},
|
||||
{'name': "Barrier",
|
||||
'flag': "I_MPI_ADJUST_BARRIER",
|
||||
'algs': [
|
||||
"Dissemination ",
|
||||
"Recursive doubling ",
|
||||
"Topology aware dissemination ",
|
||||
"Topology aware recursive doubling ",
|
||||
"Binominal gather + scatter ",
|
||||
"Topology aware binominal gather + scatter ",
|
||||
"Topology aware SHM-based flat ",
|
||||
"Topology aware SHM-based Knomial ",
|
||||
"Topology aware SHM-based Knary ",
|
||||
]},
|
||||
{'name': "Bcast",
|
||||
'flag': "I_MPI_ADJUST_BCAST",
|
||||
'algs': [
|
||||
"Binomial ",
|
||||
"Recursive doubling ",
|
||||
"Ring ",
|
||||
"Topology aware binomial ",
|
||||
"Topology aware recursive doubling ",
|
||||
"Topology aware ring ",
|
||||
"Shumilin`s ",
|
||||
"Knomial ",
|
||||
"Topology aware SHM-based flat ",
|
||||
"Topology aware SHM-based Knomial ",
|
||||
"Topology aware SHM-based Knary ",
|
||||
"NUMA aware SHM-based (SSE4.2) ",
|
||||
"NUMA aware SHM-based (AVX2) ",
|
||||
"NUMA aware SHM-based (AVX512) ",
|
||||
]},
|
||||
|
||||
{'name': "Gather",
|
||||
'flag': "I_MPI_ADJUST_GATHER",
|
||||
'algs': [
|
||||
"Binomial ",
|
||||
"Topology aware binomial ",
|
||||
"Shumilin`s ",
|
||||
"Binomial with segmentation ",
|
||||
]},
|
||||
|
||||
{'name': "Reduce_scatter",
|
||||
'flag': "I_MPI_ADJUST_REDUCE_SCATTER",
|
||||
'algs': [
|
||||
"Recursive halving ",
|
||||
"Pair wise exchange ",
|
||||
"Recursive doubling ",
|
||||
"Reduce + Scatterv ",
|
||||
"Topology aware Reduce + Scatterv ",
|
||||
]},
|
||||
|
||||
{'name': "Reduce",
|
||||
'flag': "I_MPI_ADJUST_REDUCE",
|
||||
'algs': [
|
||||
"Shumilin`s ",
|
||||
"Binomial ",
|
||||
"Topology aware Shumilin`s ",
|
||||
"Topology aware binomial ",
|
||||
"Rabenseifner`s ",
|
||||
"Topology aware Rabenseifner`s ",
|
||||
"Knomial ",
|
||||
"Topology aware SHM-based flat ",
|
||||
"Topology aware SHM-based Knomial ",
|
||||
"Topology aware SHM-based Knary ",
|
||||
"Topology aware SHM-based binomial ",
|
||||
]},
|
||||
|
||||
{'name': "Scatter",
|
||||
'flag': "I_MPI_ADJUST_SCATTER",
|
||||
'algs': [
|
||||
"Binomial ",
|
||||
"Topology aware binomial ",
|
||||
"Shumilin`s ",
|
||||
]},
|
||||
]
|
||||
log = ""
|
||||
|
||||
############## MULTIPLE-NODE LAUNCH ##############
|
||||
off_cache_flags = [
|
||||
"-off_cache -1",
|
||||
"-off_cache 50",
|
||||
""
|
||||
]
|
||||
|
||||
ndcnt = [
|
||||
2,
|
||||
3,
|
||||
4,
|
||||
5,
|
||||
6,
|
||||
7,
|
||||
8,
|
||||
9,
|
||||
10
|
||||
]
|
||||
|
||||
proc_per_node = 72
|
||||
multiple_node_parameter = dict(default_parameter)
|
||||
multiple_node_template = load_template("./templates/multinode_algs.template")
|
||||
|
||||
for flag in off_cache_flags:
|
||||
multiple_node_parameter["off_cache_flag"] = flag
|
||||
for n_nodes in ndcnt:
|
||||
n_procs = n_nodes*proc_per_node
|
||||
multiple_node_parameter["n_procs"] = int(n_procs)
|
||||
multiple_node_parameter["n_nodes"] = n_nodes
|
||||
for alg_conf in algs_dic:
|
||||
collective = alg_conf['name']
|
||||
multiple_node_parameter["job_name"] = collective
|
||||
multiple_node_parameter["alg_flag"] = alg_conf['flag']
|
||||
algs = alg_conf["algs"]
|
||||
for idx, alg in enumerate(algs):
|
||||
multiple_node_parameter["alg_name"] = alg
|
||||
multiple_node_parameter["alg_idx"] = idx
|
||||
batch_file = os.path.join(batch_files_dir,
|
||||
f"{collective}_{alg.strip().replace('`','').replace(' ','_').replace('/','_')}.sh")
|
||||
write_batch(batch_file,
|
||||
multiple_node_template.format(**multiple_node_parameter))
|
||||
result = subprocess.run(["sbatch", batch_file],
|
||||
capture_output=True, text=True)
|
||||
log += f"#{collective} {n_procs}" + "\n"
|
||||
log += "\tSTDOUT:" + result.stdout + "\n"
|
||||
log += "\tSTDERR:" + result.stderr + "\n"
|
||||
print(log)
|
||||
@@ -1,112 +0,0 @@
|
||||
from venv import create
|
||||
import pandas as pd
|
||||
import os
|
||||
|
||||
data_markers = {
|
||||
"block_separator": "#----------------------------------------------------------------",
|
||||
"benchmark_type": "# Benchmarking",
|
||||
"processes_num": "# #processes = ",
|
||||
"min_bytelen": "# Minimum message length in bytes",
|
||||
"max_bytelen": "# Maximum message length in bytes",
|
||||
"mpi_datatype": "# MPI_Datatype :",
|
||||
"mpi_red_datatype": "# MPI_Datatype for reductions :",
|
||||
"mpi_red_op": "# MPI_Op",
|
||||
"end_of_table": "# All processes entering MPI_Finalize",
|
||||
"creation_time": "# CREATION_TIME :",
|
||||
"n_nodes": "# N_NODES :",
|
||||
"off_cache_flag": "# OFF_CACHE_FLAG :",
|
||||
"algorithm":"# ALGORITHM :"
|
||||
}
|
||||
|
||||
column_names = [
|
||||
"benchmark_type",
|
||||
"proc_num",
|
||||
"msg_size_bytes",
|
||||
"repetitions",
|
||||
"t_min_usec",
|
||||
"t_max_usec",
|
||||
"t_avg_usec",
|
||||
"mpi_datatype",
|
||||
"mpi_red_datatype",
|
||||
"mpi_red_op",
|
||||
"creation_time",
|
||||
"n_nodes",
|
||||
"off_cache_flag",
|
||||
"algorithm"
|
||||
]
|
||||
|
||||
data = list()
|
||||
|
||||
for file in os.listdir("data/"):
|
||||
with open("data/"+file, 'r') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
past_preheader = False
|
||||
in_header = False
|
||||
in_body = False
|
||||
|
||||
btype = "NA"
|
||||
proc_num = "NA"
|
||||
mpi_datatype = "NA"
|
||||
mpi_red_datatype = "NA"
|
||||
mpi_red_op = "NA"
|
||||
creation_time = "NA"
|
||||
n_nodes = "NA"
|
||||
off_cache_flag = "NA"
|
||||
algorithm = "NA"
|
||||
|
||||
for line in lines:
|
||||
if data_markers["block_separator"] in line:
|
||||
if in_header and not past_preheader:
|
||||
past_preheader = True
|
||||
elif in_header and past_preheader:
|
||||
in_body = True
|
||||
in_header = not in_header
|
||||
continue
|
||||
if not in_header and not in_body and past_preheader:
|
||||
if data_markers["mpi_datatype"] in line:
|
||||
mpi_datatype = line.split()[-1]
|
||||
elif data_markers["mpi_red_datatype"] in line:
|
||||
mpi_red_datatype = line.split()[-1]
|
||||
elif data_markers["mpi_red_op"] in line:
|
||||
mpi_red_op = line.split()[-1]
|
||||
|
||||
if not in_header and not in_body and not past_preheader:
|
||||
if data_markers["n_nodes"] in line:
|
||||
n_nodes = line.split()[-1]
|
||||
if data_markers["creation_time"] in line:
|
||||
creation_time = line.split()[-1]
|
||||
if data_markers["off_cache_flag"] in line:
|
||||
off_cache_flag = line.split(":")[-1].strip()
|
||||
if off_cache_flag == "": off_cache_flag = "NA"
|
||||
else: off_cache_flag = off_cache_flag.replace("-off_cache","")
|
||||
if data_markers["algorithm"] in line:
|
||||
algorithm = line.split(":")[-1].strip()
|
||||
|
||||
if past_preheader and in_header:
|
||||
if data_markers["benchmark_type"] in line:
|
||||
btype = line.split()[2]
|
||||
if data_markers["processes_num"] in line:
|
||||
proc_num = int(line.split()[3])
|
||||
|
||||
if in_body:
|
||||
if "#" in line or "".join(line.split()) == "":
|
||||
continue
|
||||
if data_markers["end_of_table"] in line:
|
||||
break
|
||||
if("int-overflow" in line) : continue
|
||||
if("out-of-mem" in line) : continue
|
||||
data.append([btype, proc_num]+[int(s) if s.isdigit()
|
||||
else float(s) for s in line.split()] +
|
||||
[
|
||||
mpi_datatype,
|
||||
mpi_red_datatype,
|
||||
mpi_red_op,
|
||||
creation_time,
|
||||
n_nodes,
|
||||
off_cache_flag,
|
||||
algorithm
|
||||
])
|
||||
|
||||
df = pd.DataFrame(data, columns=column_names)
|
||||
df.to_csv("data.csv", index=False)
|
||||
|
Before Width: | Height: | Size: 194 KiB |
|
Before Width: | Height: | Size: 268 KiB |
|
Before Width: | Height: | Size: 210 KiB |
|
Before Width: | Height: | Size: 284 KiB |
|
Before Width: | Height: | Size: 184 KiB |
|
Before Width: | Height: | Size: 261 KiB |
|
Before Width: | Height: | Size: 220 KiB |
|
Before Width: | Height: | Size: 286 KiB |
|
Before Width: | Height: | Size: 214 KiB |
|
Before Width: | Height: | Size: 281 KiB |
|
Before Width: | Height: | Size: 217 KiB |
|
Before Width: | Height: | Size: 290 KiB |
|
Before Width: | Height: | Size: 201 KiB |
|
Before Width: | Height: | Size: 271 KiB |
|
Before Width: | Height: | Size: 192 KiB |
|
Before Width: | Height: | Size: 234 KiB |
@@ -1,104 +0,0 @@
|
||||
from matplotlib.ticker import FuncFormatter
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from matplotlib.lines import Line2D
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class columns ():
|
||||
benchmark_type = 'benchmark_type'
|
||||
proc_num = 'proc_num'
|
||||
msg_size_bytes = 'msg_size_bytes'
|
||||
repetitions = 'repetitions'
|
||||
t_min_usec = 't_min_usec'
|
||||
t_max_usec = 't_max_usec'
|
||||
t_avg_usec = 't_avg_usec'
|
||||
mpi_datatype = 'mpi_datatype'
|
||||
mpi_red_datatype = 'mpi_red_datatype'
|
||||
mpi_red_op = 'mpi_red_op'
|
||||
creation_time = 'creation_time'
|
||||
n_nodes = 'n_nodes'
|
||||
off_cache_flag = 'off_cache_flag'
|
||||
algorithm = 'algorithm'
|
||||
|
||||
|
||||
class collectives(Enum):
|
||||
Bcast = 'Bcast'
|
||||
Reduce = 'Reduce'
|
||||
Allreduce = 'Allreduce'
|
||||
Alltoall = 'Alltoall'
|
||||
Scatter = 'Scatter'
|
||||
Reduce_scatter = 'Reduce_scatter'
|
||||
Allgather = 'Allgather'
|
||||
Gather = 'Gather'
|
||||
|
||||
|
||||
data_file = "./data/data_04_11_25_algs.csv"
|
||||
|
||||
df_multinode = pd.read_csv(data_file, delimiter=',')
|
||||
df_multinode.fillna(0, inplace=True)
|
||||
df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50]
|
||||
for c in collectives:
|
||||
|
||||
df_single = df_multinode[df_multinode[columns.benchmark_type]
|
||||
== c.value]
|
||||
df_single = df_single[df_single[columns.msg_size_bytes] > 1000]
|
||||
df_single = df_single[[columns.proc_num, columns.msg_size_bytes,
|
||||
columns.t_avg_usec, columns.algorithm]]
|
||||
|
||||
df_gather_best = df_single.loc[ # pyright: ignore
|
||||
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
|
||||
columns.t_avg_usec].idxmin()
|
||||
].reset_index(drop=True)
|
||||
|
||||
df_gather_best = df_gather_best[df_gather_best[columns.msg_size_bytes] > 2**17]
|
||||
|
||||
pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore
|
||||
columns=columns.proc_num, values=columns.t_avg_usec)
|
||||
|
||||
X = pivot_best.columns.values # proc_num
|
||||
Y = pivot_best.index.values # msg_size_bytes
|
||||
X, Y = np.meshgrid(X, Y) # pyright: ignore
|
||||
Z = pivot_best.values
|
||||
|
||||
alg_pivot = df_gather_best.pivot(
|
||||
index=columns.msg_size_bytes,
|
||||
columns=columns.proc_num,
|
||||
values=columns.algorithm
|
||||
)
|
||||
|
||||
algorithms = alg_pivot.values.flatten()
|
||||
unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)]))
|
||||
color_map = {alg: i for i, alg in enumerate(unique_algs)}
|
||||
color_values = np.array([color_map.get(a, np.nan) for a in algorithms])
|
||||
|
||||
fig = plt.figure(figsize=(16, 9))
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
surf = ax.plot_wireframe(X, Y, Z,
|
||||
color='black', linewidths=1)
|
||||
surf_points = ax.scatter(X,
|
||||
Y, Z, c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore
|
||||
|
||||
handles = [
|
||||
Line2D([0], [0],
|
||||
marker='o', color='w',
|
||||
label=alg,
|
||||
markerfacecolor=plt.cm.viridis(
|
||||
color_map[alg] / max(len(unique_algs)-1, 1)),
|
||||
markersize=8)
|
||||
for alg in unique_algs
|
||||
]
|
||||
|
||||
ax.legend(handles=handles, title="Algorithm", loc='upper right')
|
||||
ax.set_xlabel("Process Count")
|
||||
ax.set_ylabel("Message Size [B]")
|
||||
ax.set_zlabel("Average Time [μs]")
|
||||
ax.set_title(f"{c.value}")
|
||||
ax.set_xticks(pivot_best.columns.values) # pyright: ignore
|
||||
ax.set_xticklabels(pivot_best.columns.values)
|
||||
ax.set_yticks(Y[:, 0])
|
||||
ymin, ymax = ax.get_ylim()
|
||||
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
|
||||
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
|
||||
plt.savefig(f"./plots/{c.value.lower()}_algcomp.png")
|
||||
@@ -1,127 +0,0 @@
|
||||
from matplotlib.ticker import FuncFormatter
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from matplotlib.lines import Line2D
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class columns ():
|
||||
benchmark_type = 'benchmark_type'
|
||||
proc_num = 'proc_num'
|
||||
msg_size_bytes = 'msg_size_bytes'
|
||||
repetitions = 'repetitions'
|
||||
t_min_usec = 't_min_usec'
|
||||
t_max_usec = 't_max_usec'
|
||||
t_avg_usec = 't_avg_usec'
|
||||
mpi_datatype = 'mpi_datatype'
|
||||
mpi_red_datatype = 'mpi_red_datatype'
|
||||
mpi_red_op = 'mpi_red_op'
|
||||
creation_time = 'creation_time'
|
||||
n_nodes = 'n_nodes'
|
||||
off_cache_flag = 'off_cache_flag'
|
||||
algorithm = 'algorithm'
|
||||
|
||||
|
||||
class collectives(Enum):
|
||||
Bcast = 'Bcast'
|
||||
Reduce = 'Reduce'
|
||||
Allreduce = 'Allreduce'
|
||||
Alltoall = 'Alltoall'
|
||||
Scatter = 'Scatter'
|
||||
Reduce_scatter = 'Reduce_scatter'
|
||||
Allgather = 'Allgather'
|
||||
Gather = 'Gather'
|
||||
|
||||
|
||||
def log_notation(val, pos):
|
||||
return f" $1e{int(val)}$" if val != 0 else "1"
|
||||
|
||||
|
||||
def log2_notation(val, pos):
|
||||
return "$2^{"+str(int(val))+"}$" if val != 0 else "1"
|
||||
|
||||
|
||||
data_file = "./data/data_04_11_25_algs.csv"
|
||||
|
||||
df_multinode = pd.read_csv(data_file, delimiter=',')
|
||||
df_multinode.fillna(0, inplace=True)
|
||||
df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50]
|
||||
for c in collectives:
|
||||
|
||||
df_single = df_multinode[df_multinode[columns.benchmark_type]
|
||||
== c.value]
|
||||
df_single = df_single[df_single[columns.msg_size_bytes] > 1000]
|
||||
df_single = df_single[[columns.proc_num, columns.msg_size_bytes,
|
||||
columns.t_avg_usec, columns.algorithm]]
|
||||
|
||||
df_gather_best = df_single.loc[ # pyright: ignore
|
||||
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
|
||||
columns.t_avg_usec].idxmin()
|
||||
].reset_index(drop=True)
|
||||
|
||||
df_gather_worst = df_single.loc[ # pyright: ignore
|
||||
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
|
||||
columns.t_avg_usec].idxmax()
|
||||
].reset_index(drop=True)
|
||||
# df_gather_select = df_gather_select[df_gather_select[columns.msg_size_bytes] > 2**17]
|
||||
|
||||
pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore
|
||||
columns=columns.proc_num, values=columns.t_avg_usec)
|
||||
pivot_worst = df_gather_worst.pivot(index=columns.msg_size_bytes, # pyright: ignore
|
||||
columns=columns.proc_num, values=columns.t_avg_usec)
|
||||
|
||||
X = pivot_best.columns.values # proc_num
|
||||
Y = pivot_best.index.values # msg_size_bytes
|
||||
X, Y = np.meshgrid(X, Y) # pyright: ignore
|
||||
Z = pivot_best.values
|
||||
|
||||
X_w = pivot_worst.columns.values # proc_num
|
||||
Y_w = pivot_worst.index.values # msg_size_bytes
|
||||
X_w, Y_w = np.meshgrid(X_w, Y_w) # pyright: ignore
|
||||
Z_w = pivot_worst.values
|
||||
|
||||
alg_pivot = df_gather_best.pivot(
|
||||
index=columns.msg_size_bytes,
|
||||
columns=columns.proc_num,
|
||||
values=columns.algorithm
|
||||
)
|
||||
|
||||
algorithms = alg_pivot.values.flatten()
|
||||
unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)]))
|
||||
color_map = {alg: i for i, alg in enumerate(unique_algs)}
|
||||
color_values = np.array([color_map.get(a, np.nan) for a in algorithms])
|
||||
|
||||
fig = plt.figure(figsize=(16, 9))
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
surf = ax.plot_wireframe(X, np.log2(Y), np.log(Z),
|
||||
color='black', linewidths=1)
|
||||
surf = ax.plot_wireframe(X_w, np.log2(
|
||||
Y_w), np.log(Z_w), color='gray', linewidths=0.3)
|
||||
|
||||
surf_points = ax.scatter(X, np.log2(
|
||||
Y), np.log(Z), c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore
|
||||
|
||||
surf_points = ax.scatter(X_w, np.log2(
|
||||
Y_w), np.log(Z_w), c='gray', alpha=0.2, s=20, depthshade=False) # pyright: ignore
|
||||
|
||||
handles = [
|
||||
Line2D([0], [0],
|
||||
marker='o', color='w',
|
||||
label=alg,
|
||||
markerfacecolor=plt.cm.viridis(
|
||||
color_map[alg] / max(len(unique_algs)-1, 1)),
|
||||
markersize=8)
|
||||
for alg in unique_algs
|
||||
]
|
||||
|
||||
ax.legend(handles=handles, title="Algorithm", loc='upper right')
|
||||
ax.set_xlabel("Process Count")
|
||||
ax.set_ylabel("Message Size [B] (log2)")
|
||||
ax.set_zlabel("Average Time [μs] (log10)")
|
||||
ax.set_title(f"{c.value}")
|
||||
ax.set_xticks(pivot_best.columns.values) # pyright: ignore
|
||||
ax.set_xticklabels(pivot_best.columns.values)
|
||||
ax.yaxis.set_major_formatter(FuncFormatter(log2_notation))
|
||||
ax.zaxis.set_major_formatter(FuncFormatter(log_notation))
|
||||
plt.savefig(f"./plots/{c.value.lower()}_algcomp_log.png")
|
||||
@@ -1,12 +1,11 @@
|
||||
#!/bin/bash -l
|
||||
#SBATCH --job-name={job_name}_{n_procs}_{alg_idx}
|
||||
#SBATCH --job-name={job_name}_{n_procs}
|
||||
#SBATCH --output={output_dir}{job_name}_{n_procs}.out
|
||||
#SBATCH --error={err_dir}{job_name}_{n_procs}.err
|
||||
#SBATCH --nodes={n_nodes}
|
||||
#SBATCH --nodelist=f01[01-64]
|
||||
#SBATCH --time=00:30:00
|
||||
#SBATCH --export=NONE
|
||||
|
||||
# SwitchName=fswibl01 Level=0 LinkSpeed=1 Nodes=f01[01-64]
|
||||
# SwitchName=fswibl02 Level=0 LinkSpeed=1 Nodes=f02[01-64]
|
||||
# SwitchName=fswibl03 Level=0 LinkSpeed=1 Nodes=f03[01-64]
|
||||
@@ -20,19 +19,17 @@
|
||||
# SwitchName=fswibl11 Level=0 LinkSpeed=1 Nodes=f08[01-64]
|
||||
# SwitchName=fswibl12 Level=0 LinkSpeed=1 Nodes=f09[01-64]
|
||||
# SwitchName=fswibl13 Level=0 LinkSpeed=1 Nodes=f10[01-64]
|
||||
|
||||
unset SLURM_EXPORT_ENV
|
||||
|
||||
module load intel intelmpi
|
||||
|
||||
export {alg_flag}={alg_idx}
|
||||
export I_MPI_ADJUST_{capital_jobname}={algnumber}
|
||||
|
||||
OUTPUT_FILENAME="{data_dir}/{job_name}_$SLURM_JOB_ID.dat"
|
||||
|
||||
echo "# CREATION_TIME : {time_stamp}" > $OUTPUT_FILENAME
|
||||
echo "# N_NODES : {n_nodes}" >> $OUTPUT_FILENAME
|
||||
echo "# OFF_CACHE_FLAG : {off_cache_flag}">> $OUTPUT_FILENAME
|
||||
echo "# ALGORITHM : {alg_name}">> $OUTPUT_FILENAME
|
||||
|
||||
srun --cpu-freq=2000000-2000000:performance -N {n_nodes} -n{n_procs} {bin} {job_name} -npmin {n_procs} {off_cache_flag} -mem 2 -time 60 >> $OUTPUT_FILENAME
|
||||
|
||||
|
||||