Compare commits

3 Commits

Author SHA1 Message Date
Erik Fabrizzi
7aef9f1ba2 Ignore Mac Trash 2025-11-17 12:54:34 +01:00
Erik Fabrizzi
1f004e0e38 clean Mac Trash 2025-11-17 12:53:53 +01:00
Erik Fabrizzi
b84118d944 results: algoritm comparison plots and plotting scripts 2025-11-07 14:47:12 +01:00
20 changed files with 235 additions and 0 deletions

1
.gitignore vendored
View File

@@ -0,0 +1 @@
**/.DS_Store

View File

@@ -3,6 +3,8 @@ import subprocess
from datetime import datetime from datetime import datetime
################ HELPER FUNCTIONS ################ ################ HELPER FUNCTIONS ################
def load_template(template_path: str): def load_template(template_path: str):
output_template = "" output_template = ""
with open(template_path, "r") as handle: with open(template_path, "r") as handle:
@@ -14,6 +16,7 @@ def write_batch(batch_fpath: str, batch_content: str):
with open(batch_fpath, "w") as handle: with open(batch_fpath, "w") as handle:
_ = handle.write(batch_content) _ = handle.write(batch_content)
################### SETUP DIRS ################### ################### SETUP DIRS ###################
output_dir = os.getcwd()+"/output/" output_dir = os.getcwd()+"/output/"
err_dir = os.getcwd()+"/error/" err_dir = os.getcwd()+"/error/"

Binary file not shown.

After

Width:  |  Height:  |  Size: 194 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 268 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 210 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 284 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 184 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 261 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 220 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 286 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 214 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 281 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 290 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 201 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 271 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 192 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 234 KiB

View File

@@ -0,0 +1,104 @@
from matplotlib.ticker import FuncFormatter
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.lines import Line2D
from enum import Enum
class columns ():
benchmark_type = 'benchmark_type'
proc_num = 'proc_num'
msg_size_bytes = 'msg_size_bytes'
repetitions = 'repetitions'
t_min_usec = 't_min_usec'
t_max_usec = 't_max_usec'
t_avg_usec = 't_avg_usec'
mpi_datatype = 'mpi_datatype'
mpi_red_datatype = 'mpi_red_datatype'
mpi_red_op = 'mpi_red_op'
creation_time = 'creation_time'
n_nodes = 'n_nodes'
off_cache_flag = 'off_cache_flag'
algorithm = 'algorithm'
class collectives(Enum):
Bcast = 'Bcast'
Reduce = 'Reduce'
Allreduce = 'Allreduce'
Alltoall = 'Alltoall'
Scatter = 'Scatter'
Reduce_scatter = 'Reduce_scatter'
Allgather = 'Allgather'
Gather = 'Gather'
data_file = "./data/data_04_11_25_algs.csv"
df_multinode = pd.read_csv(data_file, delimiter=',')
df_multinode.fillna(0, inplace=True)
df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50]
for c in collectives:
df_single = df_multinode[df_multinode[columns.benchmark_type]
== c.value]
df_single = df_single[df_single[columns.msg_size_bytes] > 1000]
df_single = df_single[[columns.proc_num, columns.msg_size_bytes,
columns.t_avg_usec, columns.algorithm]]
df_gather_best = df_single.loc[ # pyright: ignore
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
columns.t_avg_usec].idxmin()
].reset_index(drop=True)
df_gather_best = df_gather_best[df_gather_best[columns.msg_size_bytes] > 2**17]
pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore
columns=columns.proc_num, values=columns.t_avg_usec)
X = pivot_best.columns.values # proc_num
Y = pivot_best.index.values # msg_size_bytes
X, Y = np.meshgrid(X, Y) # pyright: ignore
Z = pivot_best.values
alg_pivot = df_gather_best.pivot(
index=columns.msg_size_bytes,
columns=columns.proc_num,
values=columns.algorithm
)
algorithms = alg_pivot.values.flatten()
unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)]))
color_map = {alg: i for i, alg in enumerate(unique_algs)}
color_values = np.array([color_map.get(a, np.nan) for a in algorithms])
fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_wireframe(X, Y, Z,
color='black', linewidths=1)
surf_points = ax.scatter(X,
Y, Z, c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore
handles = [
Line2D([0], [0],
marker='o', color='w',
label=alg,
markerfacecolor=plt.cm.viridis(
color_map[alg] / max(len(unique_algs)-1, 1)),
markersize=8)
for alg in unique_algs
]
ax.legend(handles=handles, title="Algorithm", loc='upper right')
ax.set_xlabel("Process Count")
ax.set_ylabel("Message Size [B]")
ax.set_zlabel("Average Time [μs]")
ax.set_title(f"{c.value}")
ax.set_xticks(pivot_best.columns.values) # pyright: ignore
ax.set_xticklabels(pivot_best.columns.values)
ax.set_yticks(Y[:, 0])
ymin, ymax = ax.get_ylim()
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
plt.savefig(f"./plots/{c.value.lower()}_algcomp.png")

View File

@@ -0,0 +1,127 @@
from matplotlib.ticker import FuncFormatter
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.lines import Line2D
from enum import Enum
class columns ():
benchmark_type = 'benchmark_type'
proc_num = 'proc_num'
msg_size_bytes = 'msg_size_bytes'
repetitions = 'repetitions'
t_min_usec = 't_min_usec'
t_max_usec = 't_max_usec'
t_avg_usec = 't_avg_usec'
mpi_datatype = 'mpi_datatype'
mpi_red_datatype = 'mpi_red_datatype'
mpi_red_op = 'mpi_red_op'
creation_time = 'creation_time'
n_nodes = 'n_nodes'
off_cache_flag = 'off_cache_flag'
algorithm = 'algorithm'
class collectives(Enum):
Bcast = 'Bcast'
Reduce = 'Reduce'
Allreduce = 'Allreduce'
Alltoall = 'Alltoall'
Scatter = 'Scatter'
Reduce_scatter = 'Reduce_scatter'
Allgather = 'Allgather'
Gather = 'Gather'
def log_notation(val, pos):
return f" $1e{int(val)}$" if val != 0 else "1"
def log2_notation(val, pos):
return "$2^{"+str(int(val))+"}$" if val != 0 else "1"
data_file = "./data/data_04_11_25_algs.csv"
df_multinode = pd.read_csv(data_file, delimiter=',')
df_multinode.fillna(0, inplace=True)
df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50]
for c in collectives:
df_single = df_multinode[df_multinode[columns.benchmark_type]
== c.value]
df_single = df_single[df_single[columns.msg_size_bytes] > 1000]
df_single = df_single[[columns.proc_num, columns.msg_size_bytes,
columns.t_avg_usec, columns.algorithm]]
df_gather_best = df_single.loc[ # pyright: ignore
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
columns.t_avg_usec].idxmin()
].reset_index(drop=True)
df_gather_worst = df_single.loc[ # pyright: ignore
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
columns.t_avg_usec].idxmax()
].reset_index(drop=True)
# df_gather_select = df_gather_select[df_gather_select[columns.msg_size_bytes] > 2**17]
pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore
columns=columns.proc_num, values=columns.t_avg_usec)
pivot_worst = df_gather_worst.pivot(index=columns.msg_size_bytes, # pyright: ignore
columns=columns.proc_num, values=columns.t_avg_usec)
X = pivot_best.columns.values # proc_num
Y = pivot_best.index.values # msg_size_bytes
X, Y = np.meshgrid(X, Y) # pyright: ignore
Z = pivot_best.values
X_w = pivot_worst.columns.values # proc_num
Y_w = pivot_worst.index.values # msg_size_bytes
X_w, Y_w = np.meshgrid(X_w, Y_w) # pyright: ignore
Z_w = pivot_worst.values
alg_pivot = df_gather_best.pivot(
index=columns.msg_size_bytes,
columns=columns.proc_num,
values=columns.algorithm
)
algorithms = alg_pivot.values.flatten()
unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)]))
color_map = {alg: i for i, alg in enumerate(unique_algs)}
color_values = np.array([color_map.get(a, np.nan) for a in algorithms])
fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_wireframe(X, np.log2(Y), np.log(Z),
color='black', linewidths=1)
surf = ax.plot_wireframe(X_w, np.log2(
Y_w), np.log(Z_w), color='gray', linewidths=0.3)
surf_points = ax.scatter(X, np.log2(
Y), np.log(Z), c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore
surf_points = ax.scatter(X_w, np.log2(
Y_w), np.log(Z_w), c='gray', alpha=0.2, s=20, depthshade=False) # pyright: ignore
handles = [
Line2D([0], [0],
marker='o', color='w',
label=alg,
markerfacecolor=plt.cm.viridis(
color_map[alg] / max(len(unique_algs)-1, 1)),
markersize=8)
for alg in unique_algs
]
ax.legend(handles=handles, title="Algorithm", loc='upper right')
ax.set_xlabel("Process Count")
ax.set_ylabel("Message Size [B] (log2)")
ax.set_zlabel("Average Time [μs] (log10)")
ax.set_title(f"{c.value}")
ax.set_xticks(pivot_best.columns.values) # pyright: ignore
ax.set_xticklabels(pivot_best.columns.values)
ax.yaxis.set_major_formatter(FuncFormatter(log2_notation))
ax.zaxis.set_major_formatter(FuncFormatter(log_notation))
plt.savefig(f"./plots/{c.value.lower()}_algcomp_log.png")