6 Commits

Author SHA1 Message Date
Erik Fabrizzi
7aef9f1ba2 Ignore Mac Trash 2025-11-17 12:54:34 +01:00
Erik Fabrizzi
1f004e0e38 clean Mac Trash 2025-11-17 12:53:53 +01:00
Erik Fabrizzi
b84118d944 results: algoritm comparison plots and plotting scripts 2025-11-07 14:47:12 +01:00
Erik Fabrizzi
bac7118ba6 new data: runs with collectives pinned to different available algorithms 2025-11-05 12:11:08 +01:00
Erik Fabrizzi
a301cff458 forgotten due to .gitignore 2025-11-05 12:11:08 +01:00
Erik Fabrizzi
76cdecbb3d Added data,plots and plotting scripts 2025-11-05 12:11:08 +01:00
62 changed files with 44604 additions and 11 deletions

12
.gitignore vendored
View File

@@ -1,11 +1 @@
# Ignore everything
*
# But not these!
!.gitignore
!README.md
!*.py
!*.template
# Optional: Keep subdirectories and their Python files
!*/
**/.DS_Store

View File

@@ -3,6 +3,8 @@ import subprocess
from datetime import datetime
################ HELPER FUNCTIONS ################
def load_template(template_path: str):
output_template = ""
with open(template_path, "r") as handle:
@@ -14,6 +16,7 @@ def write_batch(batch_fpath: str, batch_content: str):
with open(batch_fpath, "w") as handle:
_ = handle.write(batch_content)
################### SETUP DIRS ###################
output_dir = os.getcwd()+"/output/"
err_dir = os.getcwd()+"/error/"

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 194 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 268 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 645 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 210 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 284 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 696 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 184 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 261 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 683 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 376 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 389 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 220 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 286 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 243 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 232 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 214 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 281 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 581 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 203 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 290 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 201 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 271 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 197 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 657 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 637 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 580 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 623 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 586 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 588 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 644 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 527 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 572 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 662 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 648 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 192 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 234 KiB

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,175 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "da7c16b4",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy.optimize import curve_fit\n",
"from matplotlib.cm import get_cmap"
]
},
{
"cell_type": "markdown",
"id": "47341b1d",
"metadata": {},
"source": [
"# Alltoall "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1cc39aab",
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mnotebook controller is DISPOSED. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"df_multinode = pd.read_csv(\"../data/data-multi-defand100cflag.csv\",delimiter = \",\")\n",
"df_multinode['benchmark_type'].unique()\n",
"df_gather = df_multinode[df_multinode[\"benchmark_type\"]==\"Bcast\"][df_multinode['msg_size_bytes']>1024][df_multinode['off_cache_flag']==-1]\n",
"df_gather.columns.tolist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4336d3c6",
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mnotebook controller is DISPOSED. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"def model(proc_num, alpha, beta, msg_size):\n",
" return (alpha * msg_size * (proc_num - 72) * 72) / (12.5 * 1e3) + 1e6*beta\n",
"\n",
"results = []\n",
"msg_sizes = sorted(df_gather['msg_size_bytes'].unique())\n",
"n_rows = int(np.ceil(len(msg_sizes) / 3))\n",
"n_cols = min(len(msg_sizes), 3)\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(5*n_cols, 4*n_rows), squeeze=False)\n",
"cmap = get_cmap('tab10')\n",
"\n",
"for idx, (msg_size, group) in enumerate(df_gather.groupby('msg_size_bytes')):\n",
" x = group['proc_num'].values.copy()\n",
" y = group['t_avg_usec'].values.copy()\n",
" sorted_indices = np.argsort(x)\n",
" x = x[sorted_indices]\n",
" y = y[sorted_indices]\n",
" fit_func = lambda proc_num, alpha, beta: model(proc_num, alpha, beta, msg_size)\n",
" popt, _ = curve_fit(fit_func, x, y, bounds=([1, 0], [np.inf, np.inf]))\n",
" alpha, beta = popt\n",
" results.append({'msg_size_bytes': msg_size, 'alpha': alpha, 'beta': beta})\n",
"\n",
" x_fit = np.linspace(min(x), max(x), 100)\n",
" y_fit = fit_func(x_fit, alpha, beta)\n",
" y_speed = model(x_fit,1,0,msg_size)\n",
" row, col = divmod(idx, n_cols)\n",
" ax = axes[row][col]\n",
"\n",
" color = cmap(idx % 10)\n",
" # ax.scatter(x, y/1e6, label='Data', color=color)\n",
" ax.plot(x, y/1e6, label='Data', color=color)\n",
" # ax.plot(x_fit, y_fit/1e6, linestyle='--', color=color, alpha=0.5, label='Fit')\n",
" # ax.plot(x_fit, y_speed/1e6, linestyle='--', color='red', alpha=0.1, label='Fit')\n",
" ax.set_title(f'msg_size: {msg_size} bytes')\n",
" ax.set_xlabel('num. proc.')\n",
" ax.set_ylabel('Average Time [s]')\n",
" ax.set_xticks(x)\n",
" ax.grid(True)\n",
" max_data =(x[-1]-72)*72*msg_size\n",
" min_data =(x[0]-72)*72*msg_size\n",
"\n",
" textstr = \"\"\n",
" # if(max_data > 1e9):\n",
" # textstr+=f\"max data = {max_data/1e9:0.2f}GB\\n\" \n",
" # else:\n",
" # textstr+=f\"max data = {max_data/1e6:0.2f}MB\\n\" \n",
"\n",
" # if(min_data > 1e9):\n",
" # textstr+=f\"min data = {min_data/1e9:0.2f}GB\\n\" \n",
" # else:\n",
" # textstr+=f\"min data = {min_data/1e6:0.2f}MB\\n\" \n",
" # textstr += r\"$\\alpha$\" +f\"= {alpha:.3e}\\n\"+r\"$b_{eff}=$\"+f\"{12.5/alpha:0.3f}Gbps\\n\"+\\\n",
" # r\"$\\beta$\"+f\"= {beta:.3e} s\"\n",
" # ax.text(0.95, 0.05, textstr, transform=ax.transAxes,\n",
" # fontsize=10, verticalalignment='bottom',\n",
" # horizontalalignment='right',\n",
" # bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))\n",
"\n",
"fig.suptitle('Alltoall Time Fit per Message Size\\nDots = Data Points | Dashed Lines = Fits\\n off_mem=-1', fontsize=14)\n",
"fig.tight_layout(rect=[0, 0.03, 1, 0.95])\n",
"# plt.savefig(\"plots/alltoall_analysis.png\",dpi=300)\n",
"plt.show()\n",
"\n",
"fit_results = pd.DataFrame(results)\n",
"fit_results['inv_alpha'] = 1 / fit_results['alpha']\n",
"print(fit_results)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce632d6f",
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mnotebook controller is DISPOSED. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"df_gather[df_gather['msg_size_bytes']==1048576]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "data",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,104 @@
from matplotlib.ticker import FuncFormatter
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.lines import Line2D
from enum import Enum
class columns ():
benchmark_type = 'benchmark_type'
proc_num = 'proc_num'
msg_size_bytes = 'msg_size_bytes'
repetitions = 'repetitions'
t_min_usec = 't_min_usec'
t_max_usec = 't_max_usec'
t_avg_usec = 't_avg_usec'
mpi_datatype = 'mpi_datatype'
mpi_red_datatype = 'mpi_red_datatype'
mpi_red_op = 'mpi_red_op'
creation_time = 'creation_time'
n_nodes = 'n_nodes'
off_cache_flag = 'off_cache_flag'
algorithm = 'algorithm'
class collectives(Enum):
Bcast = 'Bcast'
Reduce = 'Reduce'
Allreduce = 'Allreduce'
Alltoall = 'Alltoall'
Scatter = 'Scatter'
Reduce_scatter = 'Reduce_scatter'
Allgather = 'Allgather'
Gather = 'Gather'
data_file = "./data/data_04_11_25_algs.csv"
df_multinode = pd.read_csv(data_file, delimiter=',')
df_multinode.fillna(0, inplace=True)
df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50]
for c in collectives:
df_single = df_multinode[df_multinode[columns.benchmark_type]
== c.value]
df_single = df_single[df_single[columns.msg_size_bytes] > 1000]
df_single = df_single[[columns.proc_num, columns.msg_size_bytes,
columns.t_avg_usec, columns.algorithm]]
df_gather_best = df_single.loc[ # pyright: ignore
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
columns.t_avg_usec].idxmin()
].reset_index(drop=True)
df_gather_best = df_gather_best[df_gather_best[columns.msg_size_bytes] > 2**17]
pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore
columns=columns.proc_num, values=columns.t_avg_usec)
X = pivot_best.columns.values # proc_num
Y = pivot_best.index.values # msg_size_bytes
X, Y = np.meshgrid(X, Y) # pyright: ignore
Z = pivot_best.values
alg_pivot = df_gather_best.pivot(
index=columns.msg_size_bytes,
columns=columns.proc_num,
values=columns.algorithm
)
algorithms = alg_pivot.values.flatten()
unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)]))
color_map = {alg: i for i, alg in enumerate(unique_algs)}
color_values = np.array([color_map.get(a, np.nan) for a in algorithms])
fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_wireframe(X, Y, Z,
color='black', linewidths=1)
surf_points = ax.scatter(X,
Y, Z, c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore
handles = [
Line2D([0], [0],
marker='o', color='w',
label=alg,
markerfacecolor=plt.cm.viridis(
color_map[alg] / max(len(unique_algs)-1, 1)),
markersize=8)
for alg in unique_algs
]
ax.legend(handles=handles, title="Algorithm", loc='upper right')
ax.set_xlabel("Process Count")
ax.set_ylabel("Message Size [B]")
ax.set_zlabel("Average Time [μs]")
ax.set_title(f"{c.value}")
ax.set_xticks(pivot_best.columns.values) # pyright: ignore
ax.set_xticklabels(pivot_best.columns.values)
ax.set_yticks(Y[:, 0])
ymin, ymax = ax.get_ylim()
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
plt.savefig(f"./plots/{c.value.lower()}_algcomp.png")

View File

@@ -0,0 +1,127 @@
from matplotlib.ticker import FuncFormatter
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.lines import Line2D
from enum import Enum
class columns ():
benchmark_type = 'benchmark_type'
proc_num = 'proc_num'
msg_size_bytes = 'msg_size_bytes'
repetitions = 'repetitions'
t_min_usec = 't_min_usec'
t_max_usec = 't_max_usec'
t_avg_usec = 't_avg_usec'
mpi_datatype = 'mpi_datatype'
mpi_red_datatype = 'mpi_red_datatype'
mpi_red_op = 'mpi_red_op'
creation_time = 'creation_time'
n_nodes = 'n_nodes'
off_cache_flag = 'off_cache_flag'
algorithm = 'algorithm'
class collectives(Enum):
Bcast = 'Bcast'
Reduce = 'Reduce'
Allreduce = 'Allreduce'
Alltoall = 'Alltoall'
Scatter = 'Scatter'
Reduce_scatter = 'Reduce_scatter'
Allgather = 'Allgather'
Gather = 'Gather'
def log_notation(val, pos):
return f" $1e{int(val)}$" if val != 0 else "1"
def log2_notation(val, pos):
return "$2^{"+str(int(val))+"}$" if val != 0 else "1"
data_file = "./data/data_04_11_25_algs.csv"
df_multinode = pd.read_csv(data_file, delimiter=',')
df_multinode.fillna(0, inplace=True)
df_multinode = df_multinode[df_multinode[columns.off_cache_flag] == 50]
for c in collectives:
df_single = df_multinode[df_multinode[columns.benchmark_type]
== c.value]
df_single = df_single[df_single[columns.msg_size_bytes] > 1000]
df_single = df_single[[columns.proc_num, columns.msg_size_bytes,
columns.t_avg_usec, columns.algorithm]]
df_gather_best = df_single.loc[ # pyright: ignore
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
columns.t_avg_usec].idxmin()
].reset_index(drop=True)
df_gather_worst = df_single.loc[ # pyright: ignore
df_single.groupby([columns.msg_size_bytes, columns.proc_num])[ # pyright: ignore
columns.t_avg_usec].idxmax()
].reset_index(drop=True)
# df_gather_select = df_gather_select[df_gather_select[columns.msg_size_bytes] > 2**17]
pivot_best = df_gather_best.pivot(index=columns.msg_size_bytes, # pyright: ignore
columns=columns.proc_num, values=columns.t_avg_usec)
pivot_worst = df_gather_worst.pivot(index=columns.msg_size_bytes, # pyright: ignore
columns=columns.proc_num, values=columns.t_avg_usec)
X = pivot_best.columns.values # proc_num
Y = pivot_best.index.values # msg_size_bytes
X, Y = np.meshgrid(X, Y) # pyright: ignore
Z = pivot_best.values
X_w = pivot_worst.columns.values # proc_num
Y_w = pivot_worst.index.values # msg_size_bytes
X_w, Y_w = np.meshgrid(X_w, Y_w) # pyright: ignore
Z_w = pivot_worst.values
alg_pivot = df_gather_best.pivot(
index=columns.msg_size_bytes,
columns=columns.proc_num,
values=columns.algorithm
)
algorithms = alg_pivot.values.flatten()
unique_algs = sorted(pd.unique(algorithms[~pd.isna(algorithms)]))
color_map = {alg: i for i, alg in enumerate(unique_algs)}
color_values = np.array([color_map.get(a, np.nan) for a in algorithms])
fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_wireframe(X, np.log2(Y), np.log(Z),
color='black', linewidths=1)
surf = ax.plot_wireframe(X_w, np.log2(
Y_w), np.log(Z_w), color='gray', linewidths=0.3)
surf_points = ax.scatter(X, np.log2(
Y), np.log(Z), c=color_values, cmap='viridis', s=20, depthshade=False) # pyright: ignore
surf_points = ax.scatter(X_w, np.log2(
Y_w), np.log(Z_w), c='gray', alpha=0.2, s=20, depthshade=False) # pyright: ignore
handles = [
Line2D([0], [0],
marker='o', color='w',
label=alg,
markerfacecolor=plt.cm.viridis(
color_map[alg] / max(len(unique_algs)-1, 1)),
markersize=8)
for alg in unique_algs
]
ax.legend(handles=handles, title="Algorithm", loc='upper right')
ax.set_xlabel("Process Count")
ax.set_ylabel("Message Size [B] (log2)")
ax.set_zlabel("Average Time [μs] (log10)")
ax.set_title(f"{c.value}")
ax.set_xticks(pivot_best.columns.values) # pyright: ignore
ax.set_xticklabels(pivot_best.columns.values)
ax.yaxis.set_major_formatter(FuncFormatter(log2_notation))
ax.zaxis.set_major_formatter(FuncFormatter(log_notation))
plt.savefig(f"./plots/{c.value.lower()}_algcomp_log.png")

View File

@@ -0,0 +1,69 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.optimize import curve_fit
import matplotlib.cm as cm
def max_transfer_size(msg_size, np_procs, benchmark_type):
if benchmark_type == 'Allgather':
return (np_procs-72)*msg_size
elif benchmark_type == 'Scatter':
return (np_procs-72)*msg_size # ?
elif benchmark_type == 'Alltoall':
return 72*(np_procs-72)*msg_size
elif benchmark_type == 'Bcast':
return msg_size
elif benchmark_type == 'Gather':
return (np_procs)*msg_size # ?
elif benchmark_type == 'Reduce_scatter':
return 0.25*(np_procs-72)*(1/72)*msg_size # ?
elif benchmark_type == 'Allreduce':
return 0.25*(np_procs-72)*(1/72)*msg_size
elif benchmark_type == 'Reduce':
return 0.25*(np_procs-72)*(1/72)*msg_size
data_file = "data/data-multi-defand100cflag.csv"
df_multinode = pd.read_csv(data_file, delimiter=',')
df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100]
benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist()
benchmarks = [x for x in benchmarks if x[-1] != 'v']
print(benchmarks)
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin(
benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000]
df_multinode_offdef["max_transfer"] = df_multinode_offdef.apply(
lambda row: max_transfer_size(
msg_size=row["msg_size_bytes"],
np_procs=row["proc_num"],
benchmark_type=row["benchmark_type"]
),
axis=1
)
df_multinode_offdef["bytes/usec"] = df_multinode_offdef["max_transfer"] / \
df_multinode_offdef["t_avg_usec"]
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type']!='Allgather'][df_multinode_offdef['benchmark_type']!='Alltoall']
df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']]
plt.figure(figsize=(16, 9))
sns.barplot(
data=df_multinode_offdef,
x="benchmark_type",
y="t_avg_usec",
dodge=True,
hue=df_multinode_offdef["msg_size_bytes"].astype(str),
)
# plt.yscale("log")
plt.title("Average Time (usec) per Benchmark Type and Message Size")
plt.ylabel("Average Time (usec)")
plt.xlabel("Benchmark Type")
plt.xticks(rotation=45)
plt.legend(title="Message Size (bytes)")
plt.tight_layout()
# plt.show()
plt.savefig("./plots/benchmark_avg_time_barplot.png", dpi=300)
plt.close()

View File

@@ -0,0 +1,64 @@
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
data_file = "data/data-multi-defand100cflag.csv"
df_multinode = pd.read_csv(data_file, delimiter=',')
df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100]
df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']]
benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist()
benchmarks = [x for x in benchmarks if x[-1] != 'v']
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin(
benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000]
fast_benchmarks = ["Allreduce","Bcast","Reduce","Reduce_scatter"]
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef["benchmark_type"].isin(fast_benchmarks)]
plt.figure(figsize=(16, 9))
sns.barplot(
data=df_multinode_offdef,
x="benchmark_type",
y="t_avg_usec",
dodge=True,
hue=df_multinode_offdef["msg_size_bytes"].astype(str),
)
plt.ylim(0)
plt.title("Average Time (usec) per Benchmark Type and Message Size")
plt.ylabel("Average Time (usec)")
plt.xlabel("Benchmark Type")
plt.xticks(rotation=45)
plt.legend(title="Message Size (bytes)")
plt.tight_layout()
plt.savefig("./plots/fbenchmarks_avg_time_barplot.png", dpi=300)
plt.close()
df_allreduce= df_multinode_offdef[df_multinode_offdef["benchmark_type"]=="Allreduce"]
df_allreduce = df_allreduce[['msg_size_bytes','t_avg_usec','proc_num']]
df_allreduce = df_allreduce[df_allreduce['msg_size_bytes']>2**17]
pivot = df_allreduce.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec")
X = pivot.columns.values # proc_num
Y = pivot.index.values # msg_size_bytes
X, Y = np.meshgrid(X, Y)
Z = pivot.values
fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k')
cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left')
cbar.set_label("Average Time (μs)")
ax.set_xlabel("Process Count")
ax.set_ylabel("Message Size (B)")
ax.set_zlabel("Average Time (μs)")
ax.set_title("Allreduce")
ax.set_xticks(pivot.columns.values) # use the actual process count values
ax.set_xticklabels(pivot.columns.values)
ax.set_yticks(Y[:, 0])
ymin, ymax = ax.get_ylim()
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
plt.tight_layout()
plt.savefig("./plots/allreduce_surface.png", dpi=300)
plt.close()

View File

@@ -0,0 +1,66 @@
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
data_file = "data/data-multi-defand100cflag.csv"
df_multinode = pd.read_csv(data_file, delimiter=',')
df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100]
df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']]
benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist()
benchmarks = [x for x in benchmarks if x[-1] != 'v']
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin(
benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000]
# fast_benchmarks = ["Allreduce","Bcast","Reduce","Reduce_scatter"]
medium_benchmarks = ["Gather","Scatter"]
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef["benchmark_type"].isin(medium_benchmarks)]
plt.figure(figsize=(16, 9))
sns.barplot(
data=df_multinode_offdef,
x="benchmark_type",
y="t_avg_usec",
dodge=True,
hue=df_multinode_offdef["msg_size_bytes"].astype(str),
)
plt.ylim(0)
plt.title("Average Time (usec) per Benchmark Type and Message Size")
plt.ylabel("Average Time (usec)")
plt.xlabel("Benchmark Type")
plt.xticks(rotation=45)
plt.legend(title="Message Size (bytes)")
plt.tight_layout()
plt.savefig("./plots/mbenchmarks_avg_time_barplot.png", dpi=300)
plt.close()
df_gather = df_multinode_offdef[df_multinode_offdef['benchmark_type']=='Gather']
df_gather = df_gather[['msg_size_bytes','t_avg_usec','proc_num']]
df_gather = df_gather[df_gather['msg_size_bytes']>2**17]
pivot = df_gather.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec")
X = pivot.columns.values # proc_num
Y = pivot.index.values # msg_size_bytes
X, Y = np.meshgrid(X, Y)
Z = pivot.values
fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k')
cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left')
cbar.set_label("Average Time (μs)")
ax.set_xlabel("Process Count")
ax.set_ylabel("Message Size (B)")
ax.set_zlabel("Average Time (μs)")
ax.set_title("Gather")
ax.set_xticks(pivot.columns.values) # use the actual process count values
ax.set_xticklabels(pivot.columns.values)
ax.set_yticks(Y[:, 0])
ymin, ymax = ax.get_ylim()
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
plt.tight_layout()
plt.savefig("./plots/gather_surface.png", dpi=300)
plt.close()

View File

@@ -0,0 +1,93 @@
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
data_file = "data/data-multi-defand100cflag.csv"
df_multinode = pd.read_csv(data_file, delimiter=',')
df_multinode_offdef = df_multinode[df_multinode['off_cache_flag'] == 100]
df_multinode_offdef = df_multinode_offdef[['benchmark_type','msg_size_bytes','t_avg_usec','proc_num']]
benchmarks = df_multinode_offdef['benchmark_type'].unique().tolist()
benchmarks = [x for x in benchmarks if x[-1] != 'v']
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef['benchmark_type'].isin(
benchmarks)][df_multinode_offdef['msg_size_bytes'] > 1000]
slow_benchmarks = ["Alltoall","Allgather"]
df_multinode_offdef = df_multinode_offdef[df_multinode_offdef["benchmark_type"].isin(slow_benchmarks)]
plt.figure(figsize=(16, 9))
sns.barplot(
data=df_multinode_offdef,
x="benchmark_type",
y="t_avg_usec",
dodge=True,
hue=df_multinode_offdef["msg_size_bytes"].astype(str),
)
plt.ylim(0)
plt.title("Average Time (usec) per Benchmark Type and Message Size")
plt.ylabel("Average Time (usec)")
plt.xlabel("Benchmark Type")
plt.xticks(rotation=45)
plt.legend(title="Message Size (bytes)")
plt.tight_layout()
plt.savefig("./plots/sbenchmarks_avg_time_barplot.png", dpi=300)
plt.close()
df_alltoall = df_multinode_offdef[df_multinode_offdef['benchmark_type']=='Alltoall']
df_alltoall = df_alltoall[['msg_size_bytes','t_avg_usec','proc_num']]
df_alltoall = df_alltoall[df_alltoall['msg_size_bytes']>2**17]
pivot = df_alltoall.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec")
X = pivot.columns.values # proc_num
Y = pivot.index.values # msg_size_bytes
X, Y = np.meshgrid(X, Y)
Z = pivot.values
fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k')
cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left')
cbar.set_label("Average Time (μs)")
ax.set_xlabel("Process Count")
ax.set_ylabel("Message Size (B)")
ax.set_zlabel("Average Time (μs)")
ax.set_title("Alltoall")
ax.set_xticks(pivot.columns.values) # use the actual process count values
ax.set_xticklabels(pivot.columns.values)
ax.set_yticks(Y[:, 0])
ymin, ymax = ax.get_ylim()
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
plt.tight_layout()
plt.savefig("./plots/alltoall_surface.png", dpi=300)
plt.close()
df_allgather = df_multinode_offdef[df_multinode_offdef['benchmark_type']=='Allgather']
df_allgather = df_allgather[['msg_size_bytes','t_avg_usec','proc_num']]
df_allgather = df_allgather[df_allgather['msg_size_bytes']>2**17]
pivot = df_allgather.pivot(index="msg_size_bytes", columns="proc_num", values="t_avg_usec")
X = pivot.columns.values # proc_num
Y = pivot.index.values # msg_size_bytes
X, Y = np.meshgrid(X, Y)
Z = pivot.values
fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap="viridis", edgecolor='k')
cbar = fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.01, location='left')
cbar.set_label("Average Time (μs)")
ax.set_xlabel("Process Count")
ax.set_ylabel("Message Size (B)")
ax.set_zlabel("Average Time (μs)")
ax.set_title("Allgather")
ax.set_xticks(pivot.columns.values) # use the actual process count values
ax.set_xticklabels(pivot.columns.values)
ax.set_yticks(Y[:, 0])
ymin, ymax = ax.get_ylim()
ax.set_ylim(ymin*0.8, ymax) # 30% more space at top
ax.set_yticklabels([f"$2^{{{int(np.log2(v))}}}$" for v in Y[:, 0]])
plt.tight_layout()
plt.savefig("./plots/allgather_surface.png", dpi=300)
plt.close()