initial_commit
This commit is contained in:
commit
8b80f1fd28
11
.gitignore
vendored
Normal file
11
.gitignore
vendored
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
# Ignore everything
|
||||||
|
*
|
||||||
|
|
||||||
|
# But not these!
|
||||||
|
!.gitignore
|
||||||
|
!README.md
|
||||||
|
!*.py
|
||||||
|
!*.template
|
||||||
|
# Optional: Keep subdirectories and their Python files
|
||||||
|
|
||||||
|
!*/
|
79
launch_bench_multinode.py
Executable file
79
launch_bench_multinode.py
Executable file
@ -0,0 +1,79 @@
|
|||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
|
||||||
|
def load_template(template_path: str):
|
||||||
|
output_template = ""
|
||||||
|
with open(template_path, "r") as handle:
|
||||||
|
output_template = handle.read()
|
||||||
|
return output_template
|
||||||
|
|
||||||
|
|
||||||
|
def write_batch(batch_fpath: str, batch_content: str):
|
||||||
|
with open(batch_fpath, "w") as handle:
|
||||||
|
_ = handle.write(batch_content)
|
||||||
|
|
||||||
|
|
||||||
|
collectives = ["Reduce",
|
||||||
|
# "Reduce_scatter",
|
||||||
|
# "Reduce_scatter_block",
|
||||||
|
# "Allreduce",
|
||||||
|
# "Allgather",
|
||||||
|
# "Allgatherv",
|
||||||
|
# "Scatter",
|
||||||
|
# "Scatterv",
|
||||||
|
# "Gather",
|
||||||
|
# "Gatherv",
|
||||||
|
# "Alltoall",
|
||||||
|
# "Bcast",
|
||||||
|
# "Barrier"
|
||||||
|
]
|
||||||
|
|
||||||
|
procnt = [
|
||||||
|
18,
|
||||||
|
# 36,
|
||||||
|
# 54,
|
||||||
|
# 72
|
||||||
|
]
|
||||||
|
mpi1_bin = "/home/hpc/ihpc/ihpc136h/workspace/prototyping/bin"
|
||||||
|
slurm_template = load_template("templates/bench.template")
|
||||||
|
|
||||||
|
template_parameter = {"time_stamp": datetime.now().strftime("%y_%m_%d_%H-%M-%S"),
|
||||||
|
"job_name": "",
|
||||||
|
"output_dir": os.getcwd()+"/output/",
|
||||||
|
"err_dir": os.getcwd()+"/error/",
|
||||||
|
"data_dir": os.getcwd()+"/data/",
|
||||||
|
"n_procs": 18,
|
||||||
|
"off_mem_flag": "",
|
||||||
|
"bin": mpi1_bin
|
||||||
|
}
|
||||||
|
|
||||||
|
output_dir = os.getcwd()+"/output/"
|
||||||
|
err_dir = os.getcwd()+"/error/"
|
||||||
|
batch_files_dir = os.getcwd()+"/batchs/"
|
||||||
|
data_dir = os.getcwd()+"/data/"
|
||||||
|
|
||||||
|
if os.path.isdir(output_dir) == False:
|
||||||
|
os.mkdir(output_dir)
|
||||||
|
if os.path.isdir(err_dir) == False:
|
||||||
|
os.mkdir(err_dir)
|
||||||
|
if os.path.isdir(data_dir) == False:
|
||||||
|
os.mkdir(data_dir)
|
||||||
|
if os.path.isdir(batch_files_dir) == False:
|
||||||
|
os.mkdir(batch_files_dir)
|
||||||
|
|
||||||
|
log = ""
|
||||||
|
|
||||||
|
for n_procs in procnt:
|
||||||
|
template_parameter["n_procs"] = n_procs
|
||||||
|
for collective in collectives:
|
||||||
|
template_parameter["job_name"] = collective
|
||||||
|
write_batch(batch_files_dir+collective+".sh",
|
||||||
|
slurm_template.format(**template_parameter))
|
||||||
|
result = subprocess.run(["sbatch", batch_files_dir+collective+".sh"],
|
||||||
|
capture_output=True, text=True)
|
||||||
|
log += f"#{collective} {n_procs}" + "\n"
|
||||||
|
log += "\tSTDOUT:" + result.stdout + "\n"
|
||||||
|
log += "\tSTDERR:" + result.stderr + "\n"
|
||||||
|
print(log)
|
79
launch_bench_singlenode.py
Executable file
79
launch_bench_singlenode.py
Executable file
@ -0,0 +1,79 @@
|
|||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
|
||||||
|
def load_template(template_path: str):
|
||||||
|
output_template = ""
|
||||||
|
with open(template_path, "r") as handle:
|
||||||
|
output_template = handle.read()
|
||||||
|
return output_template
|
||||||
|
|
||||||
|
|
||||||
|
def write_batch(batch_fpath: str, batch_content: str):
|
||||||
|
with open(batch_fpath, "w") as handle:
|
||||||
|
_ = handle.write(batch_content)
|
||||||
|
|
||||||
|
|
||||||
|
collectives = ["Reduce",
|
||||||
|
"Reduce_scatter",
|
||||||
|
"Allreduce",
|
||||||
|
"Allgather",
|
||||||
|
"Allgatherv",
|
||||||
|
"Scatter",
|
||||||
|
"Scatterv",
|
||||||
|
"Gather",
|
||||||
|
"Gatherv",
|
||||||
|
"Alltoall",
|
||||||
|
"Bcast",
|
||||||
|
# "Barrier"
|
||||||
|
]
|
||||||
|
|
||||||
|
procnt = [
|
||||||
|
18,
|
||||||
|
36,
|
||||||
|
54,
|
||||||
|
72
|
||||||
|
]
|
||||||
|
mpi1_bin = "/home/hpc/ihpc/ihpc136h/workspace/prototyping/bin/IMB-MPI1"
|
||||||
|
slurm_template = load_template("templates/bench.template")
|
||||||
|
|
||||||
|
template_parameter = {"time_stamp": datetime.now().strftime("%y_%m_%d_%H-%M-%S"),
|
||||||
|
"job_name": "",
|
||||||
|
"output_dir": os.getcwd()+"/output/",
|
||||||
|
"err_dir": os.getcwd()+"/error/",
|
||||||
|
"data_dir": os.getcwd()+"/data/",
|
||||||
|
"n_procs": 18,
|
||||||
|
"off_mem_flag": "",
|
||||||
|
"bin": mpi1_bin
|
||||||
|
}
|
||||||
|
|
||||||
|
output_dir = os.getcwd()+"/output/"
|
||||||
|
err_dir = os.getcwd()+"/error/"
|
||||||
|
batch_files_dir = os.getcwd()+"/batchs/"
|
||||||
|
data_dir = os.getcwd()+"/data/"
|
||||||
|
|
||||||
|
if os.path.isdir(output_dir) == False:
|
||||||
|
os.mkdir(output_dir)
|
||||||
|
if os.path.isdir(err_dir) == False:
|
||||||
|
os.mkdir(err_dir)
|
||||||
|
if os.path.isdir(data_dir) == False:
|
||||||
|
os.mkdir(data_dir)
|
||||||
|
if os.path.isdir(batch_files_dir) == False:
|
||||||
|
os.mkdir(batch_files_dir)
|
||||||
|
|
||||||
|
log = ""
|
||||||
|
|
||||||
|
for n_procs in procnt:
|
||||||
|
template_parameter["n_procs"] = n_procs
|
||||||
|
for collective in collectives:
|
||||||
|
template_parameter["job_name"] = collective
|
||||||
|
write_batch(batch_files_dir+collective+".sh",
|
||||||
|
slurm_template.format(**template_parameter))
|
||||||
|
result = subprocess.run(["sbatch", batch_files_dir+collective+".sh"],
|
||||||
|
capture_output=True, text=True)
|
||||||
|
log += f"#{collective} {n_procs}" + "\n"
|
||||||
|
log += "\tSTDOUT:" + result.stdout + "\n"
|
||||||
|
log += "\tSTDERR:" + result.stderr + "\n"
|
||||||
|
print(log)
|
||||||
|
_ = subprocess.run(["./clean.sh"])
|
72
postprocess_data.py
Executable file
72
postprocess_data.py
Executable file
@ -0,0 +1,72 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import os
|
||||||
|
|
||||||
|
data_markers = {
|
||||||
|
"block_separator": "#----------------------------------------------------------------",
|
||||||
|
"benchmark_type": "# Benchmarking",
|
||||||
|
"processes_num": "# #processes = ",
|
||||||
|
"min_bytelen": "# Minimum message length in bytes",
|
||||||
|
"max_bytelen": "# Maximum message length in bytes",
|
||||||
|
"mpi_datatype": "# MPI_Datatype :",
|
||||||
|
"mpi_red_datatype": "# MPI_Datatype for reductions :",
|
||||||
|
"mpi_red_op": "# MPI_Op",
|
||||||
|
"end_of_table": "# All processes entering MPI_Finalize",
|
||||||
|
}
|
||||||
|
|
||||||
|
column_names = [
|
||||||
|
"benchmark_type",
|
||||||
|
"proc_num",
|
||||||
|
"msg_size_bytes",
|
||||||
|
"repetitions",
|
||||||
|
"t_min_usec",
|
||||||
|
"t_max_usec",
|
||||||
|
"t_avg_usec",
|
||||||
|
"mpi_datatype",
|
||||||
|
"mpi_red_datatype",
|
||||||
|
"mpi_red_op",
|
||||||
|
]
|
||||||
|
|
||||||
|
data = list()
|
||||||
|
for file in os.listdir("data/"):
|
||||||
|
with open("data/"+file, 'r') as f:
|
||||||
|
lines = f.readlines()
|
||||||
|
past_preheader = False
|
||||||
|
in_header = False
|
||||||
|
in_body = False
|
||||||
|
btype = None
|
||||||
|
proc_num = None
|
||||||
|
mpi_datatype = None
|
||||||
|
mpi_red_datatype = None
|
||||||
|
mpi_red_op = None
|
||||||
|
|
||||||
|
for line in lines:
|
||||||
|
if data_markers["block_separator"] in line:
|
||||||
|
if in_header and not past_preheader:
|
||||||
|
past_preheader = True
|
||||||
|
elif in_header and past_preheader:
|
||||||
|
in_body = True
|
||||||
|
in_header = not in_header
|
||||||
|
continue
|
||||||
|
if not in_header and not in_body and past_preheader:
|
||||||
|
if data_markers["mpi_datatype"] in line:
|
||||||
|
mpi_datatype = line.split()[-1]
|
||||||
|
elif data_markers["mpi_red_datatype"] in line:
|
||||||
|
mpi_red_datatype = line.split()[-1]
|
||||||
|
elif data_markers["mpi_red_op"] in line:
|
||||||
|
mpi_red_op = line.split()[-1]
|
||||||
|
|
||||||
|
if past_preheader and in_header:
|
||||||
|
if data_markers["benchmark_type"] in line:
|
||||||
|
btype = line.split()[2]
|
||||||
|
if data_markers["processes_num"] in line:
|
||||||
|
proc_num = int(line.split()[3])
|
||||||
|
if in_body:
|
||||||
|
if "#" in line or "".join(line.split()) == "":
|
||||||
|
continue
|
||||||
|
if data_markers["end_of_table"] in line:
|
||||||
|
break
|
||||||
|
data.append([btype, proc_num]+[int(s) if s.isdigit()
|
||||||
|
else float(s) for s in line.split()] + [mpi_datatype, mpi_red_datatype, mpi_red_op])
|
||||||
|
|
||||||
|
df = pd.DataFrame(data, columns=column_names)
|
||||||
|
df.to_csv("data.csv", index=False)
|
18
templates/bench.template
Normal file
18
templates/bench.template
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
#!/bin/bash -l
|
||||||
|
#SBATCH --job-name={job_name}_{n_procs}
|
||||||
|
#SBATCH --output={output_dir}{job_name}_{n_procs}.out
|
||||||
|
#SBATCH --error={err_dir}{job_name}_{n_procs}.err
|
||||||
|
#SBATCH --nodes=1
|
||||||
|
#SBATCH --time=00:10:00
|
||||||
|
#SBATCH --export=NONE
|
||||||
|
|
||||||
|
unset SLURM_EXPORT_ENV
|
||||||
|
|
||||||
|
module load intel intelmpi likwid
|
||||||
|
|
||||||
|
unset I_MPI_PMI_LIBRARY
|
||||||
|
export LIKWID_SILENT=1
|
||||||
|
echo CREATION_TIME {time_stamp}
|
||||||
|
|
||||||
|
srun --cpu-freq=2000000-2000000:performance ./likwid-mpirun -np {n_procs} -mpi intelmpi -omp intel -nperdomain M:18 {bin} {job_name} -npmin {n_procs} {off_mem_flag} > {data_dir}/{job_name}_{n_procs}.dat
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user