forgotten due to .gitignore

This commit is contained in:
Erik Fabrizzi
2025-10-17 14:02:53 +02:00
parent 843b15a362
commit 0e88c73183
38 changed files with 15614 additions and 11 deletions

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,175 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "da7c16b4",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy.optimize import curve_fit\n",
"from matplotlib.cm import get_cmap"
]
},
{
"cell_type": "markdown",
"id": "47341b1d",
"metadata": {},
"source": [
"# Alltoall "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1cc39aab",
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mnotebook controller is DISPOSED. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"df_multinode = pd.read_csv(\"../data/data-multi-defand100cflag.csv\",delimiter = \",\")\n",
"df_multinode['benchmark_type'].unique()\n",
"df_gather = df_multinode[df_multinode[\"benchmark_type\"]==\"Bcast\"][df_multinode['msg_size_bytes']>1024][df_multinode['off_cache_flag']==-1]\n",
"df_gather.columns.tolist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4336d3c6",
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mnotebook controller is DISPOSED. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"def model(proc_num, alpha, beta, msg_size):\n",
" return (alpha * msg_size * (proc_num - 72) * 72) / (12.5 * 1e3) + 1e6*beta\n",
"\n",
"results = []\n",
"msg_sizes = sorted(df_gather['msg_size_bytes'].unique())\n",
"n_rows = int(np.ceil(len(msg_sizes) / 3))\n",
"n_cols = min(len(msg_sizes), 3)\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(5*n_cols, 4*n_rows), squeeze=False)\n",
"cmap = get_cmap('tab10')\n",
"\n",
"for idx, (msg_size, group) in enumerate(df_gather.groupby('msg_size_bytes')):\n",
" x = group['proc_num'].values.copy()\n",
" y = group['t_avg_usec'].values.copy()\n",
" sorted_indices = np.argsort(x)\n",
" x = x[sorted_indices]\n",
" y = y[sorted_indices]\n",
" fit_func = lambda proc_num, alpha, beta: model(proc_num, alpha, beta, msg_size)\n",
" popt, _ = curve_fit(fit_func, x, y, bounds=([1, 0], [np.inf, np.inf]))\n",
" alpha, beta = popt\n",
" results.append({'msg_size_bytes': msg_size, 'alpha': alpha, 'beta': beta})\n",
"\n",
" x_fit = np.linspace(min(x), max(x), 100)\n",
" y_fit = fit_func(x_fit, alpha, beta)\n",
" y_speed = model(x_fit,1,0,msg_size)\n",
" row, col = divmod(idx, n_cols)\n",
" ax = axes[row][col]\n",
"\n",
" color = cmap(idx % 10)\n",
" # ax.scatter(x, y/1e6, label='Data', color=color)\n",
" ax.plot(x, y/1e6, label='Data', color=color)\n",
" # ax.plot(x_fit, y_fit/1e6, linestyle='--', color=color, alpha=0.5, label='Fit')\n",
" # ax.plot(x_fit, y_speed/1e6, linestyle='--', color='red', alpha=0.1, label='Fit')\n",
" ax.set_title(f'msg_size: {msg_size} bytes')\n",
" ax.set_xlabel('num. proc.')\n",
" ax.set_ylabel('Average Time [s]')\n",
" ax.set_xticks(x)\n",
" ax.grid(True)\n",
" max_data =(x[-1]-72)*72*msg_size\n",
" min_data =(x[0]-72)*72*msg_size\n",
"\n",
" textstr = \"\"\n",
" # if(max_data > 1e9):\n",
" # textstr+=f\"max data = {max_data/1e9:0.2f}GB\\n\" \n",
" # else:\n",
" # textstr+=f\"max data = {max_data/1e6:0.2f}MB\\n\" \n",
"\n",
" # if(min_data > 1e9):\n",
" # textstr+=f\"min data = {min_data/1e9:0.2f}GB\\n\" \n",
" # else:\n",
" # textstr+=f\"min data = {min_data/1e6:0.2f}MB\\n\" \n",
" # textstr += r\"$\\alpha$\" +f\"= {alpha:.3e}\\n\"+r\"$b_{eff}=$\"+f\"{12.5/alpha:0.3f}Gbps\\n\"+\\\n",
" # r\"$\\beta$\"+f\"= {beta:.3e} s\"\n",
" # ax.text(0.95, 0.05, textstr, transform=ax.transAxes,\n",
" # fontsize=10, verticalalignment='bottom',\n",
" # horizontalalignment='right',\n",
" # bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))\n",
"\n",
"fig.suptitle('Alltoall Time Fit per Message Size\\nDots = Data Points | Dashed Lines = Fits\\n off_mem=-1', fontsize=14)\n",
"fig.tight_layout(rect=[0, 0.03, 1, 0.95])\n",
"# plt.savefig(\"plots/alltoall_analysis.png\",dpi=300)\n",
"plt.show()\n",
"\n",
"fit_results = pd.DataFrame(results)\n",
"fit_results['inv_alpha'] = 1 / fit_results['alpha']\n",
"print(fit_results)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce632d6f",
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mnotebook controller is DISPOSED. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"df_gather[df_gather['msg_size_bytes']==1048576]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "data",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long