mirror of
https://github.com/ClusterCockpit/cc-metric-store.git
synced 2024-11-14 15:07:26 +01:00
234 lines
5.1 KiB
Go
234 lines
5.1 KiB
Go
package memorystore
|
|
|
|
import (
|
|
"errors"
|
|
"sync"
|
|
|
|
"github.com/ClusterCockpit/cc-metric-store/internal/util"
|
|
)
|
|
|
|
// Default buffer capacity.
|
|
// `buffer.data` will only ever grow up to it's capacity and a new link
|
|
// in the buffer chain will be created if needed so that no copying
|
|
// of data or reallocation needs to happen on writes.
|
|
const (
|
|
BUFFER_CAP int = 512
|
|
)
|
|
|
|
// So that we can reuse allocations
|
|
var bufferPool sync.Pool = sync.Pool{
|
|
New: func() interface{} {
|
|
return &buffer{
|
|
data: make([]util.Float, 0, BUFFER_CAP),
|
|
}
|
|
},
|
|
}
|
|
|
|
var (
|
|
ErrNoData error = errors.New("no data for this metric/level")
|
|
ErrDataDoesNotAlign error = errors.New("data from lower granularities does not align")
|
|
)
|
|
|
|
// Each metric on each level has it's own buffer.
|
|
// This is where the actual values go.
|
|
// If `cap(data)` is reached, a new buffer is created and
|
|
// becomes the new head of a buffer list.
|
|
type buffer struct {
|
|
prev *buffer
|
|
next *buffer
|
|
data []util.Float
|
|
frequency int64
|
|
start int64
|
|
archived bool
|
|
closed bool
|
|
}
|
|
|
|
func newBuffer(ts, freq int64) *buffer {
|
|
b := bufferPool.Get().(*buffer)
|
|
b.frequency = freq
|
|
b.start = ts - (freq / 2)
|
|
b.prev = nil
|
|
b.next = nil
|
|
b.archived = false
|
|
b.closed = false
|
|
b.data = b.data[:0]
|
|
return b
|
|
}
|
|
|
|
// If a new buffer was created, the new head is returnd.
|
|
// Otherwise, the existing buffer is returnd.
|
|
// Normaly, only "newer" data should be written, but if the value would
|
|
// end up in the same buffer anyways it is allowed.
|
|
func (b *buffer) write(ts int64, value util.Float) (*buffer, error) {
|
|
if ts < b.start {
|
|
return nil, errors.New("cannot write value to buffer from past")
|
|
}
|
|
|
|
// idx := int((ts - b.start + (b.frequency / 3)) / b.frequency)
|
|
idx := int((ts - b.start) / b.frequency)
|
|
if idx >= cap(b.data) {
|
|
newbuf := newBuffer(ts, b.frequency)
|
|
newbuf.prev = b
|
|
b.next = newbuf
|
|
b.close()
|
|
b = newbuf
|
|
idx = 0
|
|
}
|
|
|
|
// Overwriting value or writing value from past
|
|
if idx < len(b.data) {
|
|
b.data[idx] = value
|
|
return b, nil
|
|
}
|
|
|
|
// Fill up unwritten slots with NaN
|
|
for i := len(b.data); i < idx; i++ {
|
|
b.data = append(b.data, util.NaN)
|
|
}
|
|
|
|
b.data = append(b.data, value)
|
|
return b, nil
|
|
}
|
|
|
|
func (b *buffer) end() int64 {
|
|
return b.firstWrite() + int64(len(b.data))*b.frequency
|
|
}
|
|
|
|
func (b *buffer) firstWrite() int64 {
|
|
return b.start + (b.frequency / 2)
|
|
}
|
|
|
|
func (b *buffer) close() {}
|
|
|
|
/*
|
|
func (b *buffer) close() {
|
|
if b.closed {
|
|
return
|
|
}
|
|
|
|
b.closed = true
|
|
n, sum, min, max := 0, 0., math.MaxFloat64, -math.MaxFloat64
|
|
for _, x := range b.data {
|
|
if x.IsNaN() {
|
|
continue
|
|
}
|
|
|
|
n += 1
|
|
f := float64(x)
|
|
sum += f
|
|
min = math.Min(min, f)
|
|
max = math.Max(max, f)
|
|
}
|
|
|
|
b.statisticts.samples = n
|
|
if n > 0 {
|
|
b.statisticts.avg = Float(sum / float64(n))
|
|
b.statisticts.min = Float(min)
|
|
b.statisticts.max = Float(max)
|
|
} else {
|
|
b.statisticts.avg = NaN
|
|
b.statisticts.min = NaN
|
|
b.statisticts.max = NaN
|
|
}
|
|
}
|
|
*/
|
|
|
|
// func interpolate(idx int, data []Float) Float {
|
|
// if idx == 0 || idx+1 == len(data) {
|
|
// return NaN
|
|
// }
|
|
// return (data[idx-1] + data[idx+1]) / 2.0
|
|
// }
|
|
|
|
// Return all known values from `from` to `to`. Gaps of information are represented as NaN.
|
|
// Simple linear interpolation is done between the two neighboring cells if possible.
|
|
// If values at the start or end are missing, instead of NaN values, the second and thrid
|
|
// return values contain the actual `from`/`to`.
|
|
// This function goes back the buffer chain if `from` is older than the currents buffer start.
|
|
// The loaded values are added to `data` and `data` is returned, possibly with a shorter length.
|
|
// If `data` is not long enough to hold all values, this function will panic!
|
|
func (b *buffer) read(from, to int64, data []util.Float) ([]util.Float, int64, int64, error) {
|
|
if from < b.firstWrite() {
|
|
if b.prev != nil {
|
|
return b.prev.read(from, to, data)
|
|
}
|
|
from = b.firstWrite()
|
|
}
|
|
|
|
i := 0
|
|
t := from
|
|
for ; t < to; t += b.frequency {
|
|
idx := int((t - b.start) / b.frequency)
|
|
if idx >= cap(b.data) {
|
|
if b.next == nil {
|
|
break
|
|
}
|
|
b = b.next
|
|
idx = 0
|
|
}
|
|
|
|
if idx >= len(b.data) {
|
|
if b.next == nil || to <= b.next.start {
|
|
break
|
|
}
|
|
data[i] += util.NaN
|
|
} else if t < b.start {
|
|
data[i] += util.NaN
|
|
// } else if b.data[idx].IsNaN() {
|
|
// data[i] += interpolate(idx, b.data)
|
|
} else {
|
|
data[i] += b.data[idx]
|
|
}
|
|
i++
|
|
}
|
|
|
|
return data[:i], from, t, nil
|
|
}
|
|
|
|
// Returns true if this buffer needs to be freed.
|
|
func (b *buffer) free(t int64) (delme bool, n int) {
|
|
if b.prev != nil {
|
|
delme, m := b.prev.free(t)
|
|
n += m
|
|
if delme {
|
|
b.prev.next = nil
|
|
if cap(b.prev.data) == BUFFER_CAP {
|
|
bufferPool.Put(b.prev)
|
|
}
|
|
b.prev = nil
|
|
}
|
|
}
|
|
|
|
end := b.end()
|
|
if end < t {
|
|
return true, n + 1
|
|
}
|
|
|
|
return false, n
|
|
}
|
|
|
|
// Call `callback` on every buffer that contains data in the range from `from` to `to`.
|
|
func (b *buffer) iterFromTo(from, to int64, callback func(b *buffer) error) error {
|
|
if b == nil {
|
|
return nil
|
|
}
|
|
|
|
if err := b.prev.iterFromTo(from, to, callback); err != nil {
|
|
return err
|
|
}
|
|
|
|
if from <= b.end() && b.start <= to {
|
|
return callback(b)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (b *buffer) count() int64 {
|
|
res := int64(len(b.data))
|
|
if b.prev != nil {
|
|
res += b.prev.count()
|
|
}
|
|
return res
|
|
}
|