cc-metric-store/memstore.go

359 lines
8.8 KiB
Go
Raw Normal View History

package main
import (
"errors"
"sync"
)
// Default buffer capacity.
// `buffer.data` will only ever grow up to it's capacity and a new link
// in the buffer chain will be created if needed so that no copying
// of data or reallocation needs to happen on writes.
const (
BUFFER_CAP int = 1024
)
// So that we can reuse allocations
var bufferPool sync.Pool = sync.Pool{
New: func() interface{} {
return make([]Float, 0, BUFFER_CAP)
},
}
var (
ErrNoData error = errors.New("no data for this metric/level")
ErrDataDoesNotAlign error = errors.New("data from lower granularities does not align")
)
// Each metric on each level has it's own buffer.
// This is where the actual values go.
// If `cap(data)` is reached, a new buffer is created and
// becomes the new head of a buffer list.
type buffer struct {
frequency int64 // Time between two "slots"
start int64 // Timestamp of when `data[0]` was written.
data []Float // The slice should never reallocacte as `cap(data)` is respected.
prev, next *buffer // `prev` contains older data, `next` newer data.
}
func newBuffer(ts, freq int64) *buffer {
return &buffer{
frequency: freq,
start: ts,
data: bufferPool.Get().([]Float)[:0],
prev: nil,
next: nil,
}
}
// If a new buffer was created, the new head is returnd.
// Otherwise, the existing buffer is returnd.
// Normaly, only "newer" data should be written, but if the value would
// end up in the same buffer anyways it is allowed.
func (b *buffer) write(ts int64, value Float) (*buffer, error) {
if ts < b.start {
return nil, errors.New("cannot write value to buffer from past")
}
idx := int((ts - b.start) / b.frequency)
if idx >= cap(b.data) {
newbuf := newBuffer(ts, b.frequency)
newbuf.prev = b
b.next = newbuf
b = newbuf
idx = 0
}
// Overwriting value or writing value from past
if idx < len(b.data) {
b.data[idx] = value
return b, nil
}
// Fill up unwritten slots with NaN
for i := len(b.data); i < idx; i++ {
b.data = append(b.data, NaN)
}
b.data = append(b.data, value)
return b, nil
}
// Return all known values from `from` to `to`. Gaps of information are
// represented by NaN. If values at the start or end are missing,
// instead of NaN values, the second and thrid return values contain
// the actual `from`/`to`.
// This function goes back the buffer chain if `from` is older than the
// currents buffer start.
// The loaded values are added to `data` and `data` is returned, possibly with a shorter length.
// If `data` is not long enough to hold all values, this function will panic!
func (b *buffer) read(from, to int64, data []Float) ([]Float, int64, int64, error) {
if from < b.start {
if b.prev != nil {
return b.prev.read(from, to, data)
}
from = b.start
}
var i int = 0
var t int64 = from
for ; t < to; t += b.frequency {
idx := int((t - b.start) / b.frequency)
if idx >= cap(b.data) {
b = b.next
if b == nil {
return data, from, t, nil
}
idx = 0
}
if t < b.start || idx >= len(b.data) {
data[i] += NaN
} else {
data[i] += b.data[idx]
}
i++
}
return data[:i], from, t, nil
}
// Free up and free all buffers in the chain only containing data
// older than `t`.
func (b *buffer) free(t int64) (int, error) {
end := b.start + int64(len(b.data))*b.frequency
if end < t && b.next != nil {
b.next.prev = nil
n := 0
for b != nil {
prev := b.prev
if prev != nil && prev.start > b.start {
panic("time travel?")
}
n += 1
bufferPool.Put(b.data)
b.data = nil
b.next = nil
b.prev = nil
b = prev
}
return n, nil
}
if b.prev != nil {
return b.prev.free(t)
}
return 0, nil
}
// Could also be called "node" as this forms a node in a tree structure.
// Called level because "node" might be confusing here.
// Can be both a leaf or a inner node. In this tree structue, inner nodes can
// also hold data (in `metrics`).
type level struct {
lock sync.RWMutex
metrics []*buffer // Every level can store metrics.
children map[string]*level // Lower levels.
}
// Find the correct level for the given selector, creating it if
// it does not exist. Example selector in the context of the
// ClusterCockpit could be: []string{ "emmy", "host123", "cpu", "0" }
// This function would probably benefit a lot from `level.children` beeing a `sync.Map`?
func (l *level) findLevelOrCreate(selector []string, nMetrics int) *level {
if len(selector) == 0 {
return l
}
2021-09-01 08:47:57 +02:00
// Allow concurrent reads:
l.lock.RLock()
var child *level
var ok bool
if l.children == nil {
// Children map needs to be created...
l.lock.RUnlock()
} else {
child, ok := l.children[selector[0]]
l.lock.RUnlock()
if ok {
return child.findLevelOrCreate(selector[1:], nMetrics)
}
}
2021-09-01 08:47:57 +02:00
// The level does not exist, take write lock for unqiue access:
l.lock.Lock()
// While this thread waited for the write lock, another thread
// could have created the child node.
if l.children != nil {
child, ok = l.children[selector[0]]
if ok {
l.lock.Unlock()
return child.findLevelOrCreate(selector[1:], nMetrics)
}
} else {
l.children = make(map[string]*level)
2021-09-01 08:47:57 +02:00
}
child = &level{
metrics: make([]*buffer, nMetrics),
children: nil,
2021-09-01 08:47:57 +02:00
}
2021-09-01 08:47:57 +02:00
l.children[selector[0]] = child
l.lock.Unlock()
return child.findLevelOrCreate(selector[1:], nMetrics)
}
type AggregationStrategy int
const (
NoAggregation AggregationStrategy = iota
SumAggregation
AvgAggregation
)
type MemoryStore struct {
root level // root of the tree structure
metrics map[string]struct {
offset int
aggregation AggregationStrategy
frequency int64
}
}
func NewMemoryStore(metrics map[string]MetricConfig) *MemoryStore {
ms := make(map[string]struct {
offset int
aggregation AggregationStrategy
frequency int64
})
offset := 0
for key, config := range metrics {
aggregation := NoAggregation
if config.Aggregation == "sum" {
aggregation = SumAggregation
} else if config.Aggregation == "avg" {
aggregation = AvgAggregation
} else if config.Aggregation != "" {
panic("invalid aggregation strategy: " + config.Aggregation)
}
ms[key] = struct {
offset int
aggregation AggregationStrategy
frequency int64
}{
offset: offset,
aggregation: aggregation,
frequency: config.Frequency,
}
offset += 1
}
return &MemoryStore{
root: level{
metrics: make([]*buffer, len(metrics)),
children: make(map[string]*level),
},
metrics: ms,
}
}
// Write all values in `metrics` to the level specified by `selector` for time `ts`.
// Look at `findLevelOrCreate` for how selectors work.
func (m *MemoryStore) Write(selector []string, ts int64, metrics []Metric) error {
l := m.root.findLevelOrCreate(selector, len(m.metrics))
2021-09-01 08:47:57 +02:00
l.lock.Lock()
defer l.lock.Unlock()
for _, metric := range metrics {
minfo, ok := m.metrics[metric.Name]
if !ok {
continue
}
b := l.metrics[minfo.offset]
if b == nil {
// First write to this metric and level
b = newBuffer(ts, minfo.frequency)
l.metrics[minfo.offset] = b
}
nb, err := b.write(ts, metric.Value)
if err != nil {
return err
}
// Last write created a new buffer...
if b != nb {
l.metrics[minfo.offset] = nb
}
}
return nil
}
// Returns all values for metric `metric` from `from` to `to` for the selected level.
// If the level does not hold the metric itself, the data will be aggregated recursively from the children.
// See `level.read` for more information.
func (m *MemoryStore) Read(selector Selector, metric string, from, to int64) ([]Float, int64, int64, error) {
if from > to {
return nil, 0, 0, errors.New("invalid time range")
}
minfo, ok := m.metrics[metric]
if !ok {
return nil, 0, 0, errors.New("unkown metric: " + metric)
}
n, data := 0, make([]Float, (to-from)/minfo.frequency+1)
err := m.root.findBuffers(selector, minfo.offset, func(b *buffer) error {
cdata, cfrom, cto, err := b.read(from, to, data)
if err != nil {
return err
}
if n == 0 {
from, to = cfrom, cto
} else if from != cfrom || to != cto || len(data) != len(cdata) {
return ErrDataDoesNotAlign
}
data = cdata
n += 1
return nil
})
if err != nil {
return nil, 0, 0, err
} else if n == 0 {
return nil, 0, 0, errors.New("metric not found")
} else if n > 1 {
if minfo.aggregation == AvgAggregation {
normalize := 1. / Float(n)
for i := 0; i < len(data); i++ {
data[i] *= normalize
}
} else if minfo.aggregation != SumAggregation {
return nil, 0, 0, errors.New("invalid aggregation")
}
}
return data, from, to, nil
}
// Release all buffers for the selected level and all its children that contain only
// values older than `t`.
func (m *MemoryStore) Free(selector Selector, t int64) (int, error) {
n := 0
err := m.root.findBuffers(selector, -1, func(b *buffer) error {
m, err := b.free(t)
n += m
return err
})
return n, err
}