package collectors import ( "encoding/json" "sync" "time" lp "github.com/ClusterCockpit/cc-energy-manager/pkg/cc-message" cclog "github.com/ClusterCockpit/cc-metric-collector/pkg/ccLogger" ) // These are the fields we read from the JSON configuration type SampleTimerCollectorConfig struct { Interval string `json:"interval"` } // This contains all variables we need during execution and the variables // defined by metricCollector (name, init, ...) type SampleTimerCollector struct { metricCollector wg sync.WaitGroup // sync group for management done chan bool // channel for management meta map[string]string // default meta information tags map[string]string // default tags config SampleTimerCollectorConfig // the configuration structure interval time.Duration // the interval parsed from configuration ticker *time.Ticker // own timer output chan lp.CCMessage // own internal output channel } func (m *SampleTimerCollector) Init(name string, config json.RawMessage) error { var err error = nil // Always set the name early in Init() to use it in cclog.Component* functions m.name = "SampleTimerCollector" // This is for later use, also call it early m.setup() // Define meta information sent with each metric // (Can also be dynamic or this is the basic set with extension through AddMeta()) m.meta = map[string]string{"source": m.name, "group": "SAMPLE"} // Define tags sent with each metric // The 'type' tag is always needed, it defines the granularity of the metric // node -> whole system // socket -> CPU socket (requires socket ID as 'type-id' tag) // cpu -> single CPU hardware thread (requires cpu ID as 'type-id' tag) m.tags = map[string]string{"type": "node"} // Read in the JSON configuration if len(config) > 0 { err = json.Unmarshal(config, &m.config) if err != nil { cclog.ComponentError(m.name, "Error reading config:", err.Error()) return err } } // Parse the read interval duration m.interval, err = time.ParseDuration(m.config.Interval) if err != nil { cclog.ComponentError(m.name, "Error parsing interval:", err.Error()) return err } // Storage for output channel m.output = nil // Management channel for the timer function. m.done = make(chan bool) // Create the own ticker m.ticker = time.NewTicker(m.interval) // Start the timer loop with return functionality by sending 'true' to the done channel m.wg.Add(1) go func() { select { case <-m.done: // Exit the timer loop cclog.ComponentDebug(m.name, "Closing...") m.wg.Done() return case timestamp := <-m.ticker.C: // This is executed every timer tick but we have to wait until the first // Read() to get the output channel if m.output != nil { m.ReadMetrics(timestamp) } } }() // Set this flag only if everything is initialized properly, all required files exist, ... m.init = true return err } // This function is called at each interval timer tick func (m *SampleTimerCollector) ReadMetrics(timestamp time.Time) { // Create a sample metric value := 1.0 // If you want to measure something for a specific amount of time, use interval // start := readState() // time.Sleep(interval) // stop := readState() // value = (stop - start) / interval.Seconds() y, err := lp.NewMessage("sample_metric", m.tags, m.meta, map[string]interface{}{"value": value}, timestamp) if err == nil && m.output != nil { // Send it to output channel if we have a valid channel m.output <- y } } func (m *SampleTimerCollector) Read(interval time.Duration, output chan lp.CCMessage) { // Capture output channel m.output = output } func (m *SampleTimerCollector) Close() { // Send signal to the timer loop to stop it m.done <- true // Wait until the timer loop is done m.wg.Wait() // Unset flag m.init = false }