mirror of
https://github.com/ClusterCockpit/cc-backend
synced 2024-11-15 11:17:24 +01:00
284 lines
11 KiB
Svelte
284 lines
11 KiB
Svelte
<script>
|
|
import { init } from './utils.js'
|
|
import { getContext, onMount } from 'svelte'
|
|
import { queryStore, gql, getContextClient } from '@urql/svelte'
|
|
import { Row, Col, Spinner, Card, Table } from 'sveltestrap'
|
|
import Filters from './filters/Filters.svelte'
|
|
import PlotSelection from './PlotSelection.svelte'
|
|
import Histogram, { binsFromFootprint } from './plots/Histogram.svelte'
|
|
import ScatterPlot from './plots/Scatter.svelte'
|
|
import PlotTable from './PlotTable.svelte'
|
|
import Roofline from './plots/Roofline.svelte'
|
|
|
|
const { query: initq } = init()
|
|
|
|
export let filterPresets
|
|
|
|
// By default, look at the jobs of the last 6 hours:
|
|
if (filterPresets?.startTime == null) {
|
|
if (filterPresets == null)
|
|
filterPresets = {}
|
|
|
|
let now = new Date(Date.now())
|
|
let hourAgo = new Date(now)
|
|
hourAgo.setHours(hourAgo.getHours() - 6)
|
|
filterPresets.startTime = { from: hourAgo.toISOString(), to: now.toISOString() }
|
|
}
|
|
|
|
let cluster;
|
|
let filterComponent; // see why here: https://stackoverflow.com/questions/58287729/how-can-i-export-a-function-from-a-svelte-component-that-changes-a-value-in-the
|
|
let jobFilters = [];
|
|
let rooflineMaxY;
|
|
let colWidth;
|
|
let numBins = 50;
|
|
let maxY = -1;
|
|
const ccconfig = getContext('cc-config')
|
|
const metricConfig = getContext('metrics')
|
|
|
|
let metricsInHistograms = ccconfig.analysis_view_histogramMetrics,
|
|
metricsInScatterplots = ccconfig.analysis_view_scatterPlotMetrics
|
|
|
|
$: metrics = [...new Set([...metricsInHistograms, ...metricsInScatterplots.flat()])]
|
|
|
|
getContext('on-init')(({ data }) => {
|
|
if (data != null) {
|
|
cluster = data.clusters.find(c => c.name == filterPresets.cluster)
|
|
console.assert(cluster != null, `This cluster could not be found: ${filterPresets.cluster}`)
|
|
|
|
rooflineMaxY = cluster.subClusters.reduce((max, part) => Math.max(max, part.flopRateSimd.value), 0)
|
|
maxY = rooflineMaxY
|
|
}
|
|
})
|
|
|
|
const client = getContextClient();
|
|
|
|
$: statsQuery = queryStore({
|
|
client: client,
|
|
query: gql`
|
|
query($jobFilters: [JobFilter!]!) {
|
|
stats: jobsStatistics(filter: $jobFilters) {
|
|
totalJobs
|
|
shortJobs
|
|
totalWalltime
|
|
totalCoreHours
|
|
histDuration { count, value }
|
|
histNumNodes { count, value }
|
|
}
|
|
|
|
topUsers: jobsCount(filter: $jobFilters, groupBy: USER, weight: NODE_HOURS, limit: 5) { name, count }
|
|
}
|
|
`,
|
|
variables: { jobFilters }
|
|
})
|
|
|
|
$: footprintsQuery = queryStore({
|
|
client: client,
|
|
query: gql`
|
|
query($jobFilters: [JobFilter!]!, $metrics: [String!]!) {
|
|
footprints: jobsFootprints(filter: $jobFilters, metrics: $metrics) {
|
|
nodehours,
|
|
metrics { metric, data }
|
|
}
|
|
}`,
|
|
variables: { jobFilters, metrics }
|
|
})
|
|
|
|
$: rooflineQuery = queryStore({
|
|
client: client,
|
|
query: gql`
|
|
query($jobFilters: [JobFilter!]!, $rows: Int!, $cols: Int!,
|
|
$minX: Float!, $minY: Float!, $maxX: Float!, $maxY: Float!) {
|
|
rooflineHeatmap(filter: $jobFilters, rows: $rows, cols: $cols,
|
|
minX: $minX, minY: $minY, maxX: $maxX, maxY: $maxY)
|
|
}
|
|
`,
|
|
variables: { jobFilters, rows: 50, cols: 50, minX: 0.01, minY: 1., maxX: 1000., maxY }
|
|
})
|
|
|
|
onMount(() => filterComponent.update())
|
|
</script>
|
|
|
|
<Row>
|
|
{#if $initq.fetching || $statsQuery.fetching || $footprintsQuery.fetching}
|
|
<Col xs="auto">
|
|
<Spinner />
|
|
</Col>
|
|
{/if}
|
|
<Col xs="auto">
|
|
{#if $initq.error}
|
|
<Card body color="danger">{$initq.error.message}</Card>
|
|
{:else if cluster}
|
|
<PlotSelection
|
|
availableMetrics={cluster.metricConfig.map(mc => mc.name)}
|
|
bind:metricsInHistograms={metricsInHistograms}
|
|
bind:metricsInScatterplots={metricsInScatterplots} />
|
|
{/if}
|
|
</Col>
|
|
<Col xs="auto">
|
|
<Filters
|
|
bind:this={filterComponent}
|
|
filterPresets={filterPresets}
|
|
disableClusterSelection={true}
|
|
startTimeQuickSelect={true}
|
|
on:update={({ detail }) => {
|
|
jobFilters = detail.filters;
|
|
}} />
|
|
</Col>
|
|
</Row>
|
|
|
|
<br/>
|
|
{#if $statsQuery.error}
|
|
<Row>
|
|
<Col>
|
|
<Card body color="danger">{$statsQuery.error.message}</Card>
|
|
</Col>
|
|
</Row>
|
|
{:else if $statsQuery.data}
|
|
<Row>
|
|
<div class="col-3" bind:clientWidth={colWidth}>
|
|
<div style="height: 40%">
|
|
<Table>
|
|
<tr>
|
|
<th scope="col">Total Jobs</th>
|
|
<td>{$statsQuery.data.stats[0].totalJobs}</td>
|
|
</tr>
|
|
<tr>
|
|
<th scope="col">Short Jobs</th>
|
|
<td>{$statsQuery.data.stats[0].shortJobs}</td>
|
|
</tr>
|
|
<tr>
|
|
<th scope="col">Total Walltime</th>
|
|
<td>{$statsQuery.data.stats[0].totalWalltime}</td>
|
|
</tr>
|
|
<tr>
|
|
<th scope="col">Total Core Hours</th>
|
|
<td>{$statsQuery.data.stats[0].totalCoreHours}</td>
|
|
</tr>
|
|
</Table>
|
|
</div>
|
|
<div style="height: 60%;">
|
|
{#key $statsQuery.data.topUsers}
|
|
<h4>Top Users (by node hours)</h4>
|
|
<Histogram
|
|
width={colWidth - 25} height={300 * 0.5} small={true}
|
|
data={$statsQuery.data.topUsers.sort((a, b) => b.count - a.count).map(({ count }, idx) => ({ count, value: idx }))}
|
|
label={(x) => x < $statsQuery.data.topUsers.length ? $statsQuery.data.topUsers[Math.floor(x)].name : 'No Users'}
|
|
ylabel="Node Hours [h]"/>
|
|
{/key}
|
|
</div>
|
|
</div>
|
|
<div class="col-3">
|
|
{#key $statsQuery.data.stats[0].histDuration}
|
|
<h4>Duration Distribution</h4>
|
|
<Histogram
|
|
width={colWidth - 25}
|
|
data={$statsQuery.data.stats[0].histDuration}
|
|
xlabel="Current Runtimes [h]"
|
|
ylabel="Number of Jobs"/>
|
|
{/key}
|
|
</div>
|
|
<div class="col-3">
|
|
{#key $statsQuery.data.stats[0].histNumNodes}
|
|
<h4>Number of Nodes Distribution</h4>
|
|
<Histogram
|
|
width={colWidth - 25}
|
|
data={$statsQuery.data.stats[0].histNumNodes}
|
|
xlabel="Allocated Nodes [#]"
|
|
ylabel="Number of Jobs" />
|
|
{/key}
|
|
</div>
|
|
<div class="col-3">
|
|
{#if $rooflineQuery.fetching}
|
|
<Spinner />
|
|
{:else if $rooflineQuery.error}
|
|
<Card body color="danger">{$rooflineQuery.error.message}</Card>
|
|
{:else if $rooflineQuery.data && cluster}
|
|
{#key $rooflineQuery.data}
|
|
<Roofline
|
|
width={colWidth - 25}
|
|
tiles={$rooflineQuery.data.rooflineHeatmap}
|
|
cluster={cluster.subClusters.length == 1 ? cluster.subClusters[0] : null}
|
|
maxY={rooflineMaxY} />
|
|
{/key}
|
|
{/if}
|
|
</div>
|
|
</Row>
|
|
{/if}
|
|
|
|
<br/>
|
|
{#if $footprintsQuery.error}
|
|
<Row>
|
|
<Col>
|
|
<Card body color="danger">{$footprintsQuery.error.message}</Card>
|
|
</Col>
|
|
</Row>
|
|
{:else if $footprintsQuery.data && $initq.data}
|
|
<Row>
|
|
<Col>
|
|
<Card body>
|
|
These histograms show the distribution of the averages of all jobs matching the filters. Each job/average is weighted by its node hours.
|
|
Note that some metrics could be disabled for specific subclusters as per metriConfig and thus could affect shown average values.
|
|
</Card>
|
|
<br/>
|
|
</Col>
|
|
</Row>
|
|
<Row>
|
|
<Col>
|
|
<PlotTable
|
|
let:item
|
|
let:width
|
|
items={metricsInHistograms.map(metric => ({ metric, ...binsFromFootprint(
|
|
$footprintsQuery.data.footprints.nodehours,
|
|
$footprintsQuery.data.footprints.metrics.find(f => f.metric == metric).data, numBins) }))}
|
|
itemsPerRow={ccconfig.plot_view_plotsPerRow}>
|
|
<h4>Average Distribution of '{item.metric}'</h4>
|
|
|
|
<Histogram
|
|
width={width} height={250}
|
|
min={item.min} max={item.max}
|
|
data={item.bins}
|
|
label={item.label}
|
|
xlabel={`${item.metric} Average [${(metricConfig(cluster.name, item.metric)?.unit?.prefix ? metricConfig(cluster.name, item.metric)?.unit?.prefix : '') +
|
|
(metricConfig(cluster.name, item.metric)?.unit?.base ? metricConfig(cluster.name, item.metric)?.unit?.base : '')}]`}
|
|
ylabel="Node Hours [h]" />
|
|
</PlotTable>
|
|
</Col>
|
|
</Row>
|
|
<br/>
|
|
<Row>
|
|
<Col>
|
|
<Card body>
|
|
Each circle represents one job. The size of a circle is proportional to its node hours. Darker circles mean multiple jobs have the same averages for the respective metrics.
|
|
Note that some metrics could be disabled for specific subclusters as per metriConfig and thus could affect shown average values.
|
|
</Card>
|
|
<br/>
|
|
</Col>
|
|
</Row>
|
|
<Row>
|
|
<Col>
|
|
<PlotTable
|
|
let:item
|
|
let:width
|
|
items={metricsInScatterplots.map(([m1, m2]) => ({
|
|
m1, f1: $footprintsQuery.data.footprints.metrics.find(f => f.metric == m1).data,
|
|
m2, f2: $footprintsQuery.data.footprints.metrics.find(f => f.metric == m2).data }))}
|
|
itemsPerRow={ccconfig.plot_view_plotsPerRow}>
|
|
|
|
<ScatterPlot
|
|
width={width} height={250} color={"rgba(0, 102, 204, 0.33)"}
|
|
xLabel={`${item.m1} [${(metricConfig(cluster.name, item.m1)?.unit?.prefix ? metricConfig(cluster.name, item.m1)?.unit?.prefix : '') +
|
|
(metricConfig(cluster.name, item.m1)?.unit?.base ? metricConfig(cluster.name, item.m1)?.unit?.base : '')}]`}
|
|
yLabel={`${item.m2} [${(metricConfig(cluster.name, item.m2)?.unit?.prefix ? metricConfig(cluster.name, item.m2)?.unit?.prefix : '') +
|
|
(metricConfig(cluster.name, item.m2)?.unit?.base ? metricConfig(cluster.name, item.m2)?.unit?.base : '')}]`}
|
|
X={item.f1} Y={item.f2} S={$footprintsQuery.data.footprints.nodehours} />
|
|
</PlotTable>
|
|
</Col>
|
|
</Row>
|
|
{/if}
|
|
|
|
<style>
|
|
h4 {
|
|
text-align: center;
|
|
}
|
|
</style>
|