Christoph Kluge 38569f55c7 add title to roofline plot
- Clarify that roofline is CPU only
2025-02-28 13:09:04 +01:00

372 lines
11 KiB
Svelte

<!--
@component Roofline Model Plot based on uPlot
Properties:
- `data [null, [], []]`: Roofline Data Structure, see below for details [Default: null]
- `renderTime Bool?`: If time information should be rendered as colored dots [Default: false]
- `allowSizeChange Bool?`: If dimensions of rendered plot can change [Default: false]
- `subCluster GraphQL.SubCluster?`: SubCluster Object; contains required topology information [Default: null]
- `width Number?`: Plot width (reactively adaptive) [Default: 600]
- `height Number?`: Plot height (reactively adaptive) [Default: 380]
Data Format:
- `data = [null, [], []]`
- Index 0: null-axis required for scatter
- Index 1: Array of XY-Arrays for Scatter
- Index 2: Optional Time Info
- `data[1][0] = [100, 200, 500, ...]`
- X Axis: Intensity (Vals up to clusters' flopRateScalar value)
- `data[1][1] = [1000, 2000, 1500, ...]`
- Y Axis: Performance (Vals up to clusters' flopRateSimd value)
- `data[2] = [0.1, 0.15, 0.2, ...]`
- Color Code: Time Information (Floats from 0 to 1) (Optional)
-->
<script>
import uPlot from "uplot";
import { formatNumber } from "../units.js";
import { onMount, onDestroy } from "svelte";
import { Card } from "@sveltestrap/sveltestrap";
export let data = null;
export let renderTime = false;
export let allowSizeChange = false;
export let subCluster = null;
export let width = 600;
export let height = 380;
let plotWrapper = null;
let uplot = null;
let timeoutId = null;
const lineWidth = clusterCockpitConfig.plot_general_lineWidth;
const cbmode = clusterCockpitConfig?.plot_general_colorblindMode || false;
// Helpers
function getGradientR(x) {
if (x < 0.5) return 0;
if (x > 0.75) return 255;
x = (x - 0.5) * 4.0;
return Math.floor(x * 255.0);
}
function getGradientG(x) {
if (x > 0.25 && x < 0.75) return 255;
if (x < 0.25) x = x * 4.0;
else x = 1.0 - (x - 0.75) * 4.0;
return Math.floor(x * 255.0);
}
function getGradientB(x) {
if (x < 0.25) return 255;
if (x > 0.5) return 0;
x = 1.0 - (x - 0.25) * 4.0;
return Math.floor(x * 255.0);
}
function getRGB(c) {
return `rgb(${cbmode ? '0' : getGradientR(c)}, ${getGradientG(c)}, ${getGradientB(c)})`;
}
function nearestThousand(num) {
return Math.ceil(num / 1000) * 1000;
}
function lineIntersect(x1, y1, x2, y2, x3, y3, x4, y4) {
let l = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
let a = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / l;
return {
x: x1 + a * (x2 - x1),
y: y1 + a * (y2 - y1),
};
}
// End Helpers
// Dot Renderers
const drawColorPoints = (u, seriesIdx, idx0, idx1) => {
const size = 5 * devicePixelRatio;
uPlot.orient(
u,
seriesIdx,
(
series,
dataX,
dataY,
scaleX,
scaleY,
valToPosX,
valToPosY,
xOff,
yOff,
xDim,
yDim,
moveTo,
lineTo,
rect,
arc,
) => {
let d = u.data[seriesIdx];
let deg360 = 2 * Math.PI;
for (let i = 0; i < d[0].length; i++) {
let p = new Path2D();
let xVal = d[0][i];
let yVal = d[1][i];
u.ctx.strokeStyle = getRGB(u.data[2][i]);
u.ctx.fillStyle = getRGB(u.data[2][i]);
if (
xVal >= scaleX.min &&
xVal <= scaleX.max &&
yVal >= scaleY.min &&
yVal <= scaleY.max
) {
let cx = valToPosX(xVal, scaleX, xDim, xOff);
let cy = valToPosY(yVal, scaleY, yDim, yOff);
p.moveTo(cx + size / 2, cy);
arc(p, cx, cy, size / 2, 0, deg360);
}
u.ctx.fill(p);
}
},
);
return null;
};
const drawPoints = (u, seriesIdx, idx0, idx1) => {
const size = 5 * devicePixelRatio;
uPlot.orient(
u,
seriesIdx,
(
series,
dataX,
dataY,
scaleX,
scaleY,
valToPosX,
valToPosY,
xOff,
yOff,
xDim,
yDim,
moveTo,
lineTo,
rect,
arc,
) => {
let d = u.data[seriesIdx];
u.ctx.strokeStyle = getRGB(0);
u.ctx.fillStyle = getRGB(0);
let deg360 = 2 * Math.PI;
let p = new Path2D();
for (let i = 0; i < d[0].length; i++) {
let xVal = d[0][i];
let yVal = d[1][i];
if (
xVal >= scaleX.min &&
xVal <= scaleX.max &&
yVal >= scaleY.min &&
yVal <= scaleY.max
) {
let cx = valToPosX(xVal, scaleX, xDim, xOff);
let cy = valToPosY(yVal, scaleY, yDim, yOff);
p.moveTo(cx + size / 2, cy);
arc(p, cx, cy, size / 2, 0, deg360);
}
}
u.ctx.fill(p);
},
);
return null;
};
// Main Function
function render(plotData) {
if (plotData) {
const opts = {
title: "CPU Roofline Diagram",
mode: 2,
width: width,
height: height,
legend: {
show: false,
},
cursor: { drag: { x: false, y: false } },
axes: [
{
label: "Intensity [FLOPS/Byte]",
values: (u, vals) => vals.map((v) => formatNumber(v)),
},
{
label: "Performace [GFLOPS]",
values: (u, vals) => vals.map((v) => formatNumber(v)),
},
],
scales: {
x: {
time: false,
range: [0.01, 1000],
distr: 3, // Render as log
log: 10, // log exp
},
y: {
range: [
1.0,
subCluster?.flopRateSimd?.value
? nearestThousand(subCluster.flopRateSimd.value)
: 10000,
],
distr: 3, // Render as log
log: 10, // log exp
},
},
series: [{}, { paths: renderTime ? drawColorPoints : drawPoints }],
hooks: {
drawClear: [
(u) => {
u.series.forEach((s, i) => {
if (i > 0) s._paths = null;
});
},
],
draw: [
(u) => {
// draw roofs when subCluster set
if (subCluster != null) {
const padding = u._padding; // [top, right, bottom, left]
u.ctx.strokeStyle = "black";
u.ctx.lineWidth = lineWidth;
u.ctx.beginPath();
const ycut = 0.01 * subCluster.memoryBandwidth.value;
const scalarKnee =
(subCluster.flopRateScalar.value - ycut) /
subCluster.memoryBandwidth.value;
const simdKnee =
(subCluster.flopRateSimd.value - ycut) /
subCluster.memoryBandwidth.value;
const scalarKneeX = u.valToPos(scalarKnee, "x", true), // Value, axis, toCanvasPixels
simdKneeX = u.valToPos(simdKnee, "x", true),
flopRateScalarY = u.valToPos(
subCluster.flopRateScalar.value,
"y",
true,
),
flopRateSimdY = u.valToPos(
subCluster.flopRateSimd.value,
"y",
true,
);
if (
scalarKneeX <
width * window.devicePixelRatio -
padding[1] * window.devicePixelRatio
) {
// Lower horizontal roofline
u.ctx.moveTo(scalarKneeX, flopRateScalarY);
u.ctx.lineTo(
width * window.devicePixelRatio -
padding[1] * window.devicePixelRatio,
flopRateScalarY,
);
}
if (
simdKneeX <
width * window.devicePixelRatio -
padding[1] * window.devicePixelRatio
) {
// Top horitontal roofline
u.ctx.moveTo(simdKneeX, flopRateSimdY);
u.ctx.lineTo(
width * window.devicePixelRatio -
padding[1] * window.devicePixelRatio,
flopRateSimdY,
);
}
let x1 = u.valToPos(0.01, "x", true),
y1 = u.valToPos(ycut, "y", true);
let x2 = u.valToPos(simdKnee, "x", true),
y2 = flopRateSimdY;
let xAxisIntersect = lineIntersect(
x1,
y1,
x2,
y2,
u.valToPos(0.01, "x", true),
u.valToPos(1.0, "y", true), // X-Axis Start Coords
u.valToPos(1000, "x", true),
u.valToPos(1.0, "y", true), // X-Axis End Coords
);
if (xAxisIntersect.x > x1) {
x1 = xAxisIntersect.x;
y1 = xAxisIntersect.y;
}
// Diagonal
u.ctx.moveTo(x1, y1);
u.ctx.lineTo(x2, y2);
u.ctx.stroke();
// Reset grid lineWidth
u.ctx.lineWidth = 0.15;
}
if (renderTime) {
// The Color Scale For Time Information
const posX = u.valToPos(0.1, "x", true)
const posXLimit = u.valToPos(100, "x", true)
const posY = u.valToPos(14000.0, "y", true)
u.ctx.fillStyle = 'black'
u.ctx.fillText('Start', posX, posY)
const start = posX + 10
for (let x = start; x < posXLimit; x += 10) {
let c = (x - start) / (posXLimit - start)
u.ctx.fillStyle = getRGB(c)
u.ctx.beginPath()
u.ctx.arc(x, posY, 3, 0, Math.PI * 2, false)
u.ctx.fill()
}
u.ctx.fillStyle = 'black'
u.ctx.fillText('End', posXLimit + 23, posY)
}
},
],
},
// cursor: { drag: { x: true, y: true } } // Activate zoom
};
uplot = new uPlot(opts, plotData, plotWrapper);
} else {
// console.log("No data for roofline!");
}
}
// Svelte and Sizechange
onMount(() => {
render(data);
});
onDestroy(() => {
if (uplot) uplot.destroy();
if (timeoutId != null) clearTimeout(timeoutId);
});
function sizeChanged() {
if (timeoutId != null) clearTimeout(timeoutId);
timeoutId = setTimeout(() => {
timeoutId = null;
if (uplot) uplot.destroy();
render(data);
}, 200);
}
$: if (allowSizeChange) sizeChanged(width, height);
</script>
{#if data != null}
<div bind:this={plotWrapper} class="p-2"/>
{:else}
<Card class="mx-4" body color="warning">Cannot render roofline: No data!</Card
>
{/if}