Files
cc-backend/pkg/metricstore/healthcheck.go

479 lines
17 KiB
Go

// Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
// All rights reserved. This file is part of cc-backend.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package metricstore
import (
"fmt"
"time"
"github.com/ClusterCockpit/cc-lib/v2/schema"
)
type HeathCheckResponse struct {
Status schema.MonitoringState
Error error
list List
}
type List struct {
StaleNodeMetricList []string
StaleHardwareMetricList map[string][]string
MissingNodeMetricList []string
MissingHardwareMetricList map[string][]string
}
// MaxMissingDataPoints is a threshold that allows a node to be healthy with certain number of data points missing.
// Suppose a node does not receive last 5 data points, then healthCheck endpoint will still say a
// node is healthy. Anything more than 5 missing points in metrics of the node will deem the node unhealthy.
const MaxMissingDataPoints int64 = 5
func (b *buffer) healthCheck() bool {
// Check if the buffer is empty
if b.data == nil {
return true
}
bufferEnd := b.start + b.frequency*int64(len(b.data))
t := time.Now().Unix()
// Check if the buffer is too old
if t-bufferEnd > MaxMissingDataPoints*b.frequency {
return true
}
return false
}
// healthCheck recursively examines a level and all its children to identify stale or missing metrics.
//
// This routine performs a two-phase check:
//
// Phase 1 - Check metrics at current level (node-level metrics):
// - Iterates through all configured metrics in m.Metrics
// - For each metric, checks if a buffer exists at l.metrics[mc.offset]
// - If buffer exists: calls buffer.healthCheck() to verify data freshness
// - Stale buffer (data older than MaxMissingDataPoints * frequency) → StaleNodeMetricList
// - Fresh buffer → healthy, no action
// - If buffer is nil: metric was never written → MissingNodeMetricList
//
// Phase 2 - Recursively check child levels (hardware-level metrics):
// - Iterates through l.children (e.g., "cpu0", "gpu0", "socket0")
// - Recursively calls healthCheck() on each child level
// - Aggregates child results into hardware-specific lists:
// - Child's StaleNodeMetricList → parent's StaleHardwareMetricList[childName]
// - Child's MissingNodeMetricList → parent's MissingHardwareMetricList[childName]
//
// The recursive nature means:
// - Calling on a host level checks: host metrics + all CPU/GPU/socket metrics
// - Calling on a socket level checks: socket metrics + all core metrics
// - Leaf levels (e.g., individual cores) only check their own metrics
//
// Parameters:
// - m: MemoryStore containing the global metric configuration (m.Metrics)
//
// Returns:
// - List: Categorized lists of stale and missing metrics at this level and below
// - error: Non-nil only for internal errors during recursion
//
// Concurrency:
// - Acquires read lock (RLock) to safely access l.metrics and l.children
// - Lock held for entire duration including recursive calls
//
// Example for host level with structure: host → [cpu0, cpu1]:
// - Checks host-level metrics (load, memory) → StaleNodeMetricList / MissingNodeMetricList
// - Recursively checks cpu0 metrics → results in StaleHardwareMetricList["cpu0"]
// - Recursively checks cpu1 metrics → results in StaleHardwareMetricList["cpu1"]
func (l *Level) healthCheck(m *MemoryStore) (List, error) {
l.lock.RLock()
defer l.lock.RUnlock()
list := List{
StaleNodeMetricList: make([]string, 0),
StaleHardwareMetricList: make(map[string][]string, 0),
MissingNodeMetricList: make([]string, 0),
MissingHardwareMetricList: make(map[string][]string, 0),
}
// Phase 1: Check metrics at this level
for metricName, mc := range m.Metrics {
if b := l.metrics[mc.offset]; b != nil {
if b.healthCheck() {
list.StaleNodeMetricList = append(list.StaleNodeMetricList, metricName)
}
} else {
list.MissingNodeMetricList = append(list.MissingNodeMetricList, metricName)
}
}
// Phase 2: Recursively check child levels (hardware components)
for hardwareMetricName, lvl := range l.children {
l, err := lvl.healthCheck(m)
if err != nil {
return List{}, err
}
if len(l.StaleNodeMetricList) != 0 {
list.StaleHardwareMetricList[hardwareMetricName] = l.StaleNodeMetricList
}
if len(l.MissingNodeMetricList) != 0 {
list.MissingHardwareMetricList[hardwareMetricName] = l.MissingNodeMetricList
}
}
return list, nil
}
// HealthCheck performs a health check on a specific node in the metric store.
//
// This routine checks whether metrics for a given node are being received and are up-to-date.
// It examines both node-level metrics (e.g., load, memory) and hardware-level metrics
// (e.g., CPU, GPU, network) to determine the monitoring state.
//
// Parameters:
// - selector: Hierarchical path to the target node, typically []string{cluster, hostname}.
// Example: []string{"emmy", "node001"} navigates to the "node001" host in the "emmy" cluster.
// The selector must match the hierarchy used during metric ingestion (see Level.findLevelOrCreate).
// - subcluster: Subcluster name (currently unused, reserved for future filtering)
//
// Returns:
// - *HeathCheckResponse: Health status with detailed lists of stale/missing metrics
// - error: Non-nil only for internal errors (not for unhealthy nodes)
//
// Health States:
// - MonitoringStateFull: All expected metrics are present and up-to-date
// - MonitoringStatePartial: Some metrics are stale (data older than MaxMissingDataPoints * frequency)
// - MonitoringStateFailed: Host not found, or metrics are completely missing
//
// The response includes detailed lists:
// - StaleNodeMetricList: Node-level metrics with stale data
// - StaleHardwareMetricList: Hardware-level metrics with stale data (grouped by component)
// - MissingNodeMetricList: Expected node-level metrics that have no data
// - MissingHardwareMetricList: Expected hardware-level metrics that have no data (grouped by component)
//
// Example usage:
//
// selector := []string{"emmy", "node001"}
// response, err := ms.HealthCheck(selector, "")
// if err != nil {
// // Internal error
// }
// switch response.Status {
// case schema.MonitoringStateFull:
// // All metrics healthy
// case schema.MonitoringStatePartial:
// // Check response.list.StaleNodeMetricList for details
// case schema.MonitoringStateFailed:
// // Check response.Error or response.list.MissingNodeMetricList
// }
func (m *MemoryStore) HealthCheck(selector []string, subcluster string) (*HeathCheckResponse, error) {
response := HeathCheckResponse{
Status: schema.MonitoringStateFull,
}
lvl := m.root.findLevel(selector)
if lvl == nil {
response.Status = schema.MonitoringStateFailed
response.Error = fmt.Errorf("[METRICSTORE]> error while HealthCheck, host not found: %#v", selector)
return &response, nil
}
var err error
response.list, err = lvl.healthCheck(m)
if err != nil {
return nil, err
}
fmt.Printf("Response: %#v\n", response)
if len(response.list.StaleNodeMetricList) != 0 ||
len(response.list.StaleHardwareMetricList) != 0 {
response.Status = schema.MonitoringStatePartial
return &response, nil
}
if len(response.list.MissingHardwareMetricList) != 0 ||
len(response.list.MissingNodeMetricList) != 0 {
response.Status = schema.MonitoringStateFailed
return &response, nil
}
return &response, nil
}
// isBufferHealthy checks if a buffer has received data for the last MaxMissingDataPoints.
//
// Returns true if the buffer is healthy (recent data within threshold), false otherwise.
// A nil buffer or empty buffer is considered unhealthy.
func (b *buffer) isBufferHealthy() bool {
// Check if the buffer is empty
if b == nil || b.data == nil {
return false
}
bufferEnd := b.start + b.frequency*int64(len(b.data))
t := time.Now().Unix()
// Check if the buffer has recent data (within MaxMissingDataPoints threshold)
if t-bufferEnd > MaxMissingDataPoints*b.frequency {
return false
}
return true
}
// countMissingValues counts the number of NaN (missing) values in the most recent data points.
//
// Examines the last MaxMissingDataPoints*2 values in the buffer and counts how many are NaN.
// We check twice the threshold to allow detecting when more than MaxMissingDataPoints are missing.
// If the buffer has fewer values, examines all available values.
//
// Returns:
// - int: Number of NaN values found in the examined range
func (b *buffer) countMissingValues() int {
if b == nil || b.data == nil || len(b.data) == 0 {
return 0
}
// Check twice the threshold to detect degraded metrics
checkCount := min(int(MaxMissingDataPoints)*2, len(b.data))
// Count NaN values in the most recent data points
missingCount := 0
startIdx := len(b.data) - checkCount
for i := startIdx; i < len(b.data); i++ {
if b.data[i].IsNaN() {
missingCount++
}
}
return missingCount
}
// getHealthyMetrics recursively collects healthy and degraded metrics at this level and below.
//
// A metric is considered:
// - Healthy: buffer has recent data within MaxMissingDataPoints threshold AND has few/no NaN values
// - Degraded: buffer exists and has recent data, but contains more than MaxMissingDataPoints NaN values
//
// This routine walks the entire subtree starting from the current level.
//
// Parameters:
// - m: MemoryStore containing the global metric configuration
//
// Returns:
// - []string: Flat list of healthy metric names from this level and all children
// - []string: Flat list of degraded metric names (exist but have too many missing values)
// - error: Non-nil only for internal errors during recursion
//
// The routine mirrors healthCheck() but provides more granular classification:
// - healthCheck() finds problems (stale/missing)
// - getHealthyMetrics() separates healthy from degraded metrics
func (l *Level) getHealthyMetrics(m *MemoryStore) ([]string, []string, error) {
l.lock.RLock()
defer l.lock.RUnlock()
healthyList := make([]string, 0)
degradedList := make([]string, 0)
// Phase 1: Check metrics at this level
for metricName, mc := range m.Metrics {
b := l.metrics[mc.offset]
if b.isBufferHealthy() {
// Buffer has recent data, now check for missing values
missingCount := b.countMissingValues()
if missingCount > int(MaxMissingDataPoints) {
degradedList = append(degradedList, metricName)
} else {
healthyList = append(healthyList, metricName)
}
}
}
// Phase 2: Recursively check child levels (hardware components)
for _, lvl := range l.children {
childHealthy, childDegraded, err := lvl.getHealthyMetrics(m)
if err != nil {
return nil, nil, err
}
// Merge child metrics into flat lists
healthyList = append(healthyList, childHealthy...)
degradedList = append(degradedList, childDegraded...)
}
return healthyList, degradedList, nil
}
// GetHealthyMetrics returns healthy and degraded metrics for a specific node as flat lists.
//
// This routine walks the metric tree starting from the specified node selector
// and collects all metrics that have received data within the last MaxMissingDataPoints
// (default: 5 data points). Metrics are classified into two categories:
//
// - Healthy: Buffer has recent data AND contains few/no NaN (missing) values
// - Degraded: Buffer has recent data BUT contains more than MaxMissingDataPoints NaN values
//
// The returned lists include both node-level metrics (e.g., "load", "mem_used") and
// hardware-level metrics (e.g., "cpu_user", "gpu_temp") in flat slices.
//
// Parameters:
// - selector: Hierarchical path to the target node, typically []string{cluster, hostname}.
// Example: []string{"emmy", "node001"} navigates to the "node001" host in the "emmy" cluster.
// The selector must match the hierarchy used during metric ingestion.
//
// Returns:
// - []string: Flat list of healthy metric names (recent data, few missing values)
// - []string: Flat list of degraded metric names (recent data, many missing values)
// - error: Non-nil if the node is not found or internal errors occur
//
// Example usage:
//
// selector := []string{"emmy", "node001"}
// healthyMetrics, degradedMetrics, err := ms.GetHealthyMetrics(selector)
// if err != nil {
// // Node not found or internal error
// return err
// }
// fmt.Printf("Healthy metrics: %v\n", healthyMetrics)
// // Output: ["load", "mem_used", "cpu_user", ...]
// fmt.Printf("Degraded metrics: %v\n", degradedMetrics)
// // Output: ["gpu_temp", "network_rx", ...] (metrics with many NaN values)
//
// Note: This routine provides more granular classification than HealthCheck:
// - HealthCheck reports stale/missing metrics (problems)
// - GetHealthyMetrics separates fully healthy from degraded metrics (quality levels)
func (m *MemoryStore) GetHealthyMetrics(selector []string) ([]string, []string, error) {
lvl := m.root.findLevel(selector)
if lvl == nil {
return nil, nil, fmt.Errorf("[METRICSTORE]> error while GetHealthyMetrics, host not found: %#v", selector)
}
healthyList, degradedList, err := lvl.getHealthyMetrics(m)
if err != nil {
return nil, nil, err
}
return healthyList, degradedList, nil
}
// NodeHealthState represents the health status of a single node's metrics.
type NodeHealthState struct {
Status schema.MonitoringState // Overall health status: Full, Partial, or Failed
HealthyMetrics []string // Metrics with recent data and few missing values
DegradedMetrics []string // Metrics with recent data but many missing values
MissingMetrics []string // Expected metrics that are completely missing or stale
}
// HealthCheckAlt performs health checks on multiple nodes and returns their health states.
//
// This routine provides a batch health check interface that evaluates multiple nodes
// against a specific set of expected metrics. For each node, it determines which metrics
// are healthy, degraded, or missing, and assigns an overall health status.
//
// Health Status Classification:
// - MonitoringStateFull: All expected metrics are healthy (recent data, few missing values)
// - MonitoringStatePartial: Some metrics are degraded (many missing values) or missing
// - MonitoringStateFailed: Node not found or all expected metrics are missing/stale
//
// Parameters:
// - cluster: Cluster name (first element of selector path)
// - nodes: List of node hostnames to check
// - expectedMetrics: List of metric names that should be present on each node
//
// Returns:
// - map[string]NodeHealthState: Map keyed by hostname containing health state for each node
// - error: Non-nil only for internal errors (individual node failures are captured in NodeHealthState)
//
// Example usage:
//
// cluster := "emmy"
// nodes := []string{"node001", "node002", "node003"}
// expectedMetrics := []string{"load", "mem_used", "cpu_user", "cpu_system"}
// healthStates, err := ms.HealthCheckAlt(cluster, nodes, expectedMetrics)
// if err != nil {
// return err
// }
// for hostname, state := range healthStates {
// fmt.Printf("Node %s: %s\n", hostname, state.Status)
// fmt.Printf(" Healthy: %v\n", state.HealthyMetrics)
// fmt.Printf(" Degraded: %v\n", state.DegradedMetrics)
// fmt.Printf(" Missing: %v\n", state.MissingMetrics)
// }
//
// Note: This routine is optimized for batch operations where you need to check
// the same set of metrics across multiple nodes. For single-node checks with
// all configured metrics, use HealthCheck() instead.
func (m *MemoryStore) HealthCheckAlt(cluster string,
nodes []string, expectedMetrics []string,
) (map[string]NodeHealthState, error) {
results := make(map[string]NodeHealthState, len(nodes))
// Create a set of expected metrics for fast lookup
expectedSet := make(map[string]bool, len(expectedMetrics))
for _, metric := range expectedMetrics {
expectedSet[metric] = true
}
// Check each node
for _, hostname := range nodes {
selector := []string{cluster, hostname}
state := NodeHealthState{
Status: schema.MonitoringStateFull,
HealthyMetrics: make([]string, 0),
DegradedMetrics: make([]string, 0),
MissingMetrics: make([]string, 0),
}
// Get healthy and degraded metrics for this node
healthyList, degradedList, err := m.GetHealthyMetrics(selector)
if err != nil {
// Node not found or internal error
state.Status = schema.MonitoringStateFailed
state.MissingMetrics = expectedMetrics
results[hostname] = state
continue
}
// Create sets for fast lookup
healthySet := make(map[string]bool, len(healthyList))
for _, metric := range healthyList {
healthySet[metric] = true
}
degradedSet := make(map[string]bool, len(degradedList))
for _, metric := range degradedList {
degradedSet[metric] = true
}
// Classify each expected metric
for _, metric := range expectedMetrics {
if healthySet[metric] {
state.HealthyMetrics = append(state.HealthyMetrics, metric)
} else if degradedSet[metric] {
state.DegradedMetrics = append(state.DegradedMetrics, metric)
} else {
state.MissingMetrics = append(state.MissingMetrics, metric)
}
}
// Determine overall health status
if len(state.MissingMetrics) > 0 || len(state.DegradedMetrics) > 0 {
if len(state.HealthyMetrics) == 0 {
// No healthy metrics at all
state.Status = schema.MonitoringStateFailed
} else {
// Some healthy, some degraded/missing
state.Status = schema.MonitoringStatePartial
}
}
// else: all metrics healthy, status remains MonitoringStateFull
results[hostname] = state
}
return results, nil
}