package graph import ( "context" "database/sql" "errors" "fmt" "math" "github.com/99designs/gqlgen/graphql" "github.com/ClusterCockpit/cc-backend/config" "github.com/ClusterCockpit/cc-backend/graph/model" "github.com/ClusterCockpit/cc-backend/metricdata" "github.com/ClusterCockpit/cc-backend/schema" sq "github.com/Masterminds/squirrel" ) // GraphQL validation should make sure that no unkown values can be specified. var groupBy2column = map[model.Aggregate]string{ model.AggregateUser: "job.user", model.AggregateProject: "job.project", model.AggregateCluster: "job.cluster", } // Helper function for the jobsStatistics GraphQL query placed here so that schema.resolvers.go is not too full. func (r *queryResolver) jobsStatistics(ctx context.Context, filter []*model.JobFilter, groupBy *model.Aggregate) ([]*model.JobsStatistics, error) { // In case `groupBy` is nil (not used), the model.JobsStatistics used is at the key '' (empty string) stats := map[string]*model.JobsStatistics{} // `socketsPerNode` and `coresPerSocket` can differ from cluster to cluster, so we need to explicitly loop over those. for _, cluster := range config.Clusters { for _, partition := range cluster.Partitions { corehoursCol := fmt.Sprintf("ROUND(SUM(job.duration * job.num_nodes * %d * %d) / 3600)", partition.SocketsPerNode, partition.CoresPerSocket) var query sq.SelectBuilder if groupBy == nil { query = sq.Select( "''", "COUNT(job.id)", "ROUND(SUM(job.duration) / 3600)", corehoursCol, ).From("job") } else { col := groupBy2column[*groupBy] query = sq.Select( col, "COUNT(job.id)", "ROUND(SUM(job.duration) / 3600)", corehoursCol, ).From("job").GroupBy(col) } query = query. Where("job.cluster = ?", cluster.Name). Where("job.partition = ?", partition.Name) query = securityCheck(ctx, query) for _, f := range filter { query = buildWhereClause(f, query) } rows, err := query.RunWith(r.DB).Query() if err != nil { return nil, err } for rows.Next() { var id sql.NullString var jobs, walltime, corehours sql.NullInt64 if err := rows.Scan(&id, &jobs, &walltime, &corehours); err != nil { return nil, err } if id.Valid { if s, ok := stats[id.String]; ok { s.TotalJobs += int(jobs.Int64) s.TotalWalltime += int(walltime.Int64) s.TotalCoreHours += int(corehours.Int64) } else { stats[id.String] = &model.JobsStatistics{ ID: id.String, TotalJobs: int(jobs.Int64), TotalWalltime: int(walltime.Int64), TotalCoreHours: int(corehours.Int64), } } } } } } if groupBy == nil { query := sq.Select("COUNT(job.id)").From("job").Where("job.duration < 120") query = securityCheck(ctx, query) for _, f := range filter { query = buildWhereClause(f, query) } if err := query.RunWith(r.DB).QueryRow().Scan(&(stats[""].ShortJobs)); err != nil { return nil, err } } else { col := groupBy2column[*groupBy] query := sq.Select(col, "COUNT(job.id)").From("job").Where("job.duration < 120") query = securityCheck(ctx, query) for _, f := range filter { query = buildWhereClause(f, query) } rows, err := query.RunWith(r.DB).Query() if err != nil { return nil, err } for rows.Next() { var id sql.NullString var shortJobs sql.NullInt64 if err := rows.Scan(&id, &shortJobs); err != nil { return nil, err } if id.Valid { stats[id.String].ShortJobs = int(shortJobs.Int64) } } } // Calculating the histogram data is expensive, so only do it if needed. // An explicit resolver can not be used because we need to know the filters. histogramsNeeded := false fields := graphql.CollectFieldsCtx(ctx, nil) for _, col := range fields { if col.Name == "histWalltime" || col.Name == "histNumNodes" { histogramsNeeded = true } } res := make([]*model.JobsStatistics, 0, len(stats)) for _, stat := range stats { res = append(res, stat) id, col := "", "" if groupBy != nil { id = stat.ID col = groupBy2column[*groupBy] } if histogramsNeeded { var err error stat.HistWalltime, err = r.jobsStatisticsHistogram(ctx, "ROUND(job.duration / 3600) as value", filter, id, col) if err != nil { return nil, err } stat.HistNumNodes, err = r.jobsStatisticsHistogram(ctx, "job.num_nodes as value", filter, id, col) if err != nil { return nil, err } } } return res, nil } // `value` must be the column grouped by, but renamed to "value". `id` and `col` can optionally be used // to add a condition to the query of the kind " = ". func (r *queryResolver) jobsStatisticsHistogram(ctx context.Context, value string, filters []*model.JobFilter, id, col string) ([]*model.HistoPoint, error) { query := sq.Select(value, "COUNT(job.id) AS count").From("job") query = securityCheck(ctx, query) for _, f := range filters { query = buildWhereClause(f, query) } if len(id) != 0 && len(col) != 0 { query = query.Where(col+" = ?", id) } rows, err := query.GroupBy("value").RunWith(r.DB).Query() if err != nil { return nil, err } points := make([]*model.HistoPoint, 0) for rows.Next() { point := model.HistoPoint{} if err := rows.Scan(&point.Value, &point.Count); err != nil { return nil, err } points = append(points, &point) } return points, nil } // Helper function for the rooflineHeatmap GraphQL query placed here so that schema.resolvers.go is not too full. func (r *Resolver) rooflineHeatmap(ctx context.Context, filter []*model.JobFilter, rows int, cols int, minX float64, minY float64, maxX float64, maxY float64) ([][]float64, error) { jobs, count, err := r.queryJobs(ctx, filter, &model.PageRequest{Page: 1, ItemsPerPage: 501}, nil) if err != nil { return nil, err } if len(jobs) > 500 { return nil, fmt.Errorf("too many jobs matched (matched: %d, max: %d)", count, 500) } fcols, frows := float64(cols), float64(rows) minX, minY, maxX, maxY = math.Log10(minX), math.Log10(minY), math.Log10(maxX), math.Log10(maxY) tiles := make([][]float64, rows) for i := range tiles { tiles[i] = make([]float64, cols) } for _, job := range jobs { jobdata, err := metricdata.LoadData(job, []string{"flops_any", "mem_bw"}, []schema.MetricScope{schema.MetricScopeNode}, ctx) if err != nil { return nil, err } flops_, membw_ := jobdata["flops_any"], jobdata["mem_bw"] if flops_ == nil && membw_ == nil { return nil, fmt.Errorf("'flops_any' or 'mem_bw' missing for job %d", job.ID) } flops, ok1 := flops_["node"] membw, ok2 := membw_["node"] if !ok1 || !ok2 { // TODO/FIXME: return nil, errors.New("todo: rooflineHeatmap() query not implemented for where flops_any or mem_bw not available at 'node' level") } for n := 0; n < len(flops.Series); n++ { flopsSeries, membwSeries := flops.Series[n], membw.Series[n] for i := 0; i < len(flopsSeries.Data); i++ { if i >= len(membwSeries.Data) { break } x, y := math.Log10(float64(flopsSeries.Data[i]/membwSeries.Data[i])), math.Log10(float64(flopsSeries.Data[i])) if math.IsNaN(x) || math.IsNaN(y) || x < minX || x >= maxX || y < minY || y > maxY { continue } x, y = math.Floor(((x-minX)/(maxX-minX))*fcols), math.Floor(((y-minY)/(maxY-minY))*frows) if x < 0 || x >= fcols || y < 0 || y >= frows { continue } tiles[int(y)][int(x)] += 1 } } } return tiles, nil } // Helper function for the jobsFootprints GraphQL query placed here so that schema.resolvers.go is not too full. func (r *queryResolver) jobsFootprints(ctx context.Context, filter []*model.JobFilter, metrics []string) ([]*model.MetricFootprints, error) { jobs, count, err := r.queryJobs(ctx, filter, &model.PageRequest{Page: 1, ItemsPerPage: 501}, nil) if err != nil { return nil, err } if len(jobs) > 500 { return nil, fmt.Errorf("too many jobs matched (matched: %d, max: %d)", count, 500) } avgs := make([][]schema.Float, len(metrics)) for i := range avgs { avgs[i] = make([]schema.Float, 0, len(jobs)) } for _, job := range jobs { if err := metricdata.LoadAverages(job, metrics, avgs, ctx); err != nil { return nil, err } } res := make([]*model.MetricFootprints, len(avgs)) for i, arr := range avgs { res[i] = &model.MetricFootprints{ Name: metrics[i], Footprints: arr, } } return res, nil }