mirror of
https://github.com/ClusterCockpit/cc-backend
synced 2024-12-26 13:29:05 +01:00
Add statisticsSeries support
This commit is contained in:
parent
9034cb90aa
commit
c254c689af
@ -15,11 +15,8 @@ import (
|
||||
|
||||
"github.com/ClusterCockpit/cc-jobarchive/config"
|
||||
"github.com/ClusterCockpit/cc-jobarchive/schema"
|
||||
"github.com/iamlouk/lrucache"
|
||||
)
|
||||
|
||||
var archiveCache *lrucache.Cache = lrucache.New(500 * 1024 * 1024)
|
||||
|
||||
// For a given job, return the path of the `data.json`/`meta.json` file.
|
||||
// TODO: Implement Issue ClusterCockpit/ClusterCockpit#97
|
||||
func getPath(job *schema.Job, file string, checkLegacy bool) (string, error) {
|
||||
@ -43,7 +40,7 @@ func loadFromArchive(job *schema.Job) (schema.JobData, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
data := archiveCache.Get(filename, func() (value interface{}, ttl time.Duration, size int) {
|
||||
data := cache.Get(filename, func() (value interface{}, ttl time.Duration, size int) {
|
||||
f, err := os.Open(filename)
|
||||
if err != nil {
|
||||
return err, 0, 1000
|
||||
@ -160,10 +157,6 @@ func ArchiveJob(job *schema.Job, ctx context.Context) (*schema.JobMeta, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// if err := calcStatisticsSeries(job, jobData, 7); err != nil {
|
||||
// return nil, err
|
||||
// }
|
||||
|
||||
jobMeta := &schema.JobMeta{
|
||||
BaseJob: job.BaseJob,
|
||||
StartTime: job.StartTime.Unix(),
|
||||
@ -235,55 +228,3 @@ func ArchiveJob(job *schema.Job, ctx context.Context) (*schema.JobMeta, error) {
|
||||
|
||||
return jobMeta, f.Close()
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
// Add statisticsSeries fields
|
||||
func calcStatisticsSeries(job *schema.Job, jobData schema.JobData, maxSeries int) error {
|
||||
for _, scopes := range jobData {
|
||||
for _, jobMetric := range scopes {
|
||||
if jobMetric.StatisticsSeries != nil {
|
||||
continue
|
||||
}
|
||||
|
||||
if len(jobMetric.Series) <= maxSeries {
|
||||
continue
|
||||
}
|
||||
|
||||
n := 0
|
||||
for _, series := range jobMetric.Series {
|
||||
if len(series.Data) > n {
|
||||
n = len(series.Data)
|
||||
}
|
||||
}
|
||||
|
||||
mean, min, max := make([]schema.Float, n), make([]schema.Float, n), make([]schema.Float, n)
|
||||
for i := 0; i < n; i++ {
|
||||
sum, smin, smax := schema.Float(0.), math.MaxFloat32, -math.MaxFloat32
|
||||
for _, series := range jobMetric.Series {
|
||||
if i >= len(series.Data) {
|
||||
sum, smin, smax = schema.NaN, math.NaN(), math.NaN()
|
||||
break
|
||||
}
|
||||
x := series.Data[i]
|
||||
sum += x
|
||||
smin = math.Min(smin, float64(x))
|
||||
smax = math.Max(smax, float64(x))
|
||||
}
|
||||
sum /= schema.Float(len(jobMetric.Series))
|
||||
mean[i] = sum
|
||||
min[i] = schema.Float(smin)
|
||||
max[i] = schema.Float(smax)
|
||||
}
|
||||
|
||||
jobMetric.StatisticsSeries = &schema.StatsSeries{
|
||||
Min: min, Mean: mean, Max: max,
|
||||
}
|
||||
jobMetric.Series = nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
*/
|
||||
|
@ -57,19 +57,17 @@ func Init(jobArchivePath string, disableArchive bool) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
var cache *lrucache.Cache = lrucache.New(500 * 1024 * 1024)
|
||||
var cache *lrucache.Cache = lrucache.New(512 * 1024 * 1024)
|
||||
|
||||
// Fetches the metric data for a job.
|
||||
func LoadData(job *schema.Job, metrics []string, scopes []schema.MetricScope, ctx context.Context) (schema.JobData, error) {
|
||||
data := cache.Get(cacheKey(job, metrics, scopes), func() (interface{}, time.Duration, int) {
|
||||
var jd schema.JobData
|
||||
var err error
|
||||
if job.State == schema.JobStateRunning || !useArchive {
|
||||
ckey := cacheKey(job, metrics, scopes)
|
||||
if data := cache.Get(ckey, nil); data != nil {
|
||||
return data.(schema.JobData), nil
|
||||
}
|
||||
|
||||
repo, ok := metricDataRepos[job.Cluster]
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("no metric data repository configured for '%s'", job.Cluster)
|
||||
return fmt.Errorf("no metric data repository configured for '%s'", job.Cluster), 0, 0
|
||||
}
|
||||
|
||||
if scopes == nil {
|
||||
@ -83,31 +81,41 @@ func LoadData(job *schema.Job, metrics []string, scopes []schema.MetricScope, ct
|
||||
}
|
||||
}
|
||||
|
||||
data, err := repo.LoadData(job, metrics, scopes, ctx)
|
||||
jd, err = repo.LoadData(job, metrics, scopes, ctx)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return err, 0, 0
|
||||
}
|
||||
|
||||
// calcStatisticsSeries(job, data, 7)
|
||||
cache.Put(ckey, data, data.Size(), 2*time.Minute)
|
||||
return data, nil
|
||||
}
|
||||
|
||||
data, err := loadFromArchive(job)
|
||||
} else {
|
||||
jd, err = loadFromArchive(job)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return err, 0, 0
|
||||
}
|
||||
|
||||
if metrics != nil {
|
||||
res := schema.JobData{}
|
||||
for _, metric := range metrics {
|
||||
if metricdata, ok := data[metric]; ok {
|
||||
if metricdata, ok := jd[metric]; ok {
|
||||
res[metric] = metricdata
|
||||
}
|
||||
}
|
||||
return res, nil
|
||||
jd = res
|
||||
}
|
||||
return data, nil
|
||||
}
|
||||
|
||||
ttl := 5 * time.Hour
|
||||
if job.State == schema.JobStateRunning {
|
||||
ttl = 2 * time.Minute
|
||||
}
|
||||
|
||||
prepareJobData(job, jd, scopes)
|
||||
return jd, ttl, jd.Size()
|
||||
})
|
||||
|
||||
if err, ok := data.(error); ok {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return data.(schema.JobData), nil
|
||||
}
|
||||
|
||||
// Used for the jobsFootprint GraphQL-Query. TODO: Rename/Generalize.
|
||||
@ -171,6 +179,34 @@ func LoadNodeData(clusterId string, metrics, nodes []string, from, to int64, ctx
|
||||
func cacheKey(job *schema.Job, metrics []string, scopes []schema.MetricScope) string {
|
||||
// Duration and StartTime do not need to be in the cache key as StartTime is less unique than
|
||||
// job.ID and the TTL of the cache entry makes sure it does not stay there forever.
|
||||
return fmt.Sprintf("%d:[%v],[%v]",
|
||||
job.ID, metrics, scopes)
|
||||
return fmt.Sprintf("%d(%s):[%v],[%v]",
|
||||
job.ID, job.State, metrics, scopes)
|
||||
}
|
||||
|
||||
// For /monitoring/job/<job> and some other places, flops_any and mem_bw need to be available at the scope 'node'.
|
||||
// If a job has a lot of nodes, statisticsSeries should be available so that a min/mean/max Graph can be used instead of
|
||||
// a lot of single lines.
|
||||
func prepareJobData(job *schema.Job, jobData schema.JobData, scopes []schema.MetricScope) {
|
||||
const maxSeriesSize int = 15
|
||||
for _, scopes := range jobData {
|
||||
for _, jm := range scopes {
|
||||
if jm.StatisticsSeries != nil || len(jm.Series) <= maxSeriesSize {
|
||||
continue
|
||||
}
|
||||
|
||||
jm.AddStatisticsSeries()
|
||||
}
|
||||
}
|
||||
|
||||
nodeScopeRequested := false
|
||||
for _, scope := range scopes {
|
||||
if scope == schema.MetricScopeNode {
|
||||
nodeScopeRequested = true
|
||||
}
|
||||
}
|
||||
|
||||
if nodeScopeRequested {
|
||||
jobData.AddNodeScope("flops_any")
|
||||
jobData.AddNodeScope("mem_bw")
|
||||
}
|
||||
}
|
||||
|
@ -3,6 +3,8 @@ package schema
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"math"
|
||||
"sort"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
@ -39,6 +41,8 @@ type StatsSeries struct {
|
||||
type MetricScope string
|
||||
|
||||
const (
|
||||
MetricScopeInvalid MetricScope = "invalid_scope"
|
||||
|
||||
MetricScopeNode MetricScope = "node"
|
||||
MetricScopeSocket MetricScope = "socket"
|
||||
MetricScopeCore MetricScope = "core"
|
||||
@ -54,6 +58,8 @@ var metricScopeGranularity map[MetricScope]int = map[MetricScope]int{
|
||||
MetricScopeHWThread: 1,
|
||||
|
||||
MetricScopeAccelerator: 5, // Special/Randomly choosen
|
||||
|
||||
MetricScopeInvalid: -1,
|
||||
}
|
||||
|
||||
func (e *MetricScope) LT(other MetricScope) bool {
|
||||
@ -111,3 +117,196 @@ func (jd *JobData) Size() int {
|
||||
}
|
||||
return n * int(unsafe.Sizeof(Float(0)))
|
||||
}
|
||||
|
||||
const smooth bool = false
|
||||
|
||||
func (jm *JobMetric) AddStatisticsSeries() {
|
||||
if jm.StatisticsSeries != nil || len(jm.Series) < 4 {
|
||||
return
|
||||
}
|
||||
|
||||
n, m := 0, len(jm.Series[0].Data)
|
||||
for _, series := range jm.Series {
|
||||
if len(series.Data) > n {
|
||||
n = len(series.Data)
|
||||
}
|
||||
if len(series.Data) < m {
|
||||
m = len(series.Data)
|
||||
}
|
||||
}
|
||||
|
||||
min, mean, max := make([]Float, n), make([]Float, n), make([]Float, n)
|
||||
i := 0
|
||||
for ; i < m; i++ {
|
||||
smin, ssum, smax := math.MaxFloat32, 0.0, -math.MaxFloat32
|
||||
notnan := 0
|
||||
for j := 0; j < len(jm.Series); j++ {
|
||||
x := float64(jm.Series[j].Data[i])
|
||||
if math.IsNaN(x) {
|
||||
continue
|
||||
}
|
||||
|
||||
notnan += 1
|
||||
ssum += x
|
||||
smin = math.Min(smin, x)
|
||||
smax = math.Max(smax, x)
|
||||
}
|
||||
|
||||
if notnan < 3 {
|
||||
min[i] = NaN
|
||||
mean[i] = NaN
|
||||
max[i] = NaN
|
||||
} else {
|
||||
min[i] = Float(smin)
|
||||
mean[i] = Float(ssum / float64(notnan))
|
||||
max[i] = Float(smax)
|
||||
}
|
||||
}
|
||||
|
||||
for ; i < n; i++ {
|
||||
min[i] = NaN
|
||||
mean[i] = NaN
|
||||
max[i] = NaN
|
||||
}
|
||||
|
||||
if smooth {
|
||||
for i := 2; i < len(mean)-2; i++ {
|
||||
if min[i].IsNaN() {
|
||||
continue
|
||||
}
|
||||
|
||||
min[i] = (min[i-2] + min[i-1] + min[i] + min[i+1] + min[i+2]) / 5
|
||||
max[i] = (max[i-2] + max[i-1] + max[i] + max[i+1] + max[i+2]) / 5
|
||||
mean[i] = (mean[i-2] + mean[i-1] + mean[i] + mean[i+1] + mean[i+2]) / 5
|
||||
}
|
||||
}
|
||||
|
||||
jm.StatisticsSeries = &StatsSeries{Mean: mean, Min: min, Max: max}
|
||||
}
|
||||
|
||||
func (jd *JobData) AddNodeScope(metric string) bool {
|
||||
scopes, ok := (*jd)[metric]
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
|
||||
var maxScope MetricScope = MetricScopeInvalid
|
||||
for scope := range scopes {
|
||||
maxScope = maxScope.Max(scope)
|
||||
}
|
||||
|
||||
if maxScope == MetricScopeInvalid || maxScope == MetricScopeNode {
|
||||
return false
|
||||
}
|
||||
|
||||
jm := scopes[maxScope]
|
||||
hosts := make(map[string][]Series, 32)
|
||||
for _, series := range jm.Series {
|
||||
hosts[series.Hostname] = append(hosts[series.Hostname], series)
|
||||
}
|
||||
|
||||
nodeJm := &JobMetric{
|
||||
Unit: jm.Unit,
|
||||
Scope: MetricScopeNode,
|
||||
Timestep: jm.Timestep,
|
||||
Series: make([]Series, 0, len(hosts)),
|
||||
}
|
||||
for hostname, series := range hosts {
|
||||
min, sum, max := math.MaxFloat32, 0.0, -math.MaxFloat32
|
||||
for _, series := range series {
|
||||
if series.Statistics == nil {
|
||||
min, sum, max = math.NaN(), math.NaN(), math.NaN()
|
||||
break
|
||||
}
|
||||
sum += series.Statistics.Avg
|
||||
min = math.Min(min, series.Statistics.Min)
|
||||
max = math.Max(max, series.Statistics.Max)
|
||||
}
|
||||
|
||||
n, m := 0, len(jm.Series[0].Data)
|
||||
for _, series := range jm.Series {
|
||||
if len(series.Data) > n {
|
||||
n = len(series.Data)
|
||||
}
|
||||
if len(series.Data) < m {
|
||||
m = len(series.Data)
|
||||
}
|
||||
}
|
||||
|
||||
i, data := 0, make([]Float, len(series[0].Data))
|
||||
for ; i < m; i++ {
|
||||
x := Float(0.0)
|
||||
for _, series := range jm.Series {
|
||||
x += series.Data[i]
|
||||
}
|
||||
data[i] = x
|
||||
}
|
||||
|
||||
for ; i < n; i++ {
|
||||
data[i] = NaN
|
||||
}
|
||||
|
||||
nodeJm.Series = append(nodeJm.Series, Series{
|
||||
Hostname: hostname,
|
||||
Statistics: &MetricStatistics{Min: min, Avg: sum / float64(len(series)), Max: max},
|
||||
Data: data,
|
||||
})
|
||||
}
|
||||
|
||||
scopes[MetricScopeNode] = nodeJm
|
||||
return true
|
||||
}
|
||||
|
||||
func (jm *JobMetric) AddPercentiles(ps []int) bool {
|
||||
if jm.StatisticsSeries == nil {
|
||||
jm.AddStatisticsSeries()
|
||||
}
|
||||
|
||||
if len(jm.Series) < 3 {
|
||||
return false
|
||||
}
|
||||
|
||||
if jm.StatisticsSeries.Percentiles == nil {
|
||||
jm.StatisticsSeries.Percentiles = make(map[int][]Float, len(ps))
|
||||
}
|
||||
|
||||
n := 0
|
||||
for _, series := range jm.Series {
|
||||
if len(series.Data) > n {
|
||||
n = len(series.Data)
|
||||
}
|
||||
}
|
||||
|
||||
data := make([][]float64, n)
|
||||
for i := 0; i < n; i++ {
|
||||
vals := make([]float64, 0, len(jm.Series))
|
||||
for _, series := range jm.Series {
|
||||
if i < len(series.Data) {
|
||||
vals = append(vals, float64(series.Data[i]))
|
||||
}
|
||||
}
|
||||
|
||||
sort.Float64s(vals)
|
||||
data[i] = vals
|
||||
}
|
||||
|
||||
for _, p := range ps {
|
||||
if p < 1 || p > 99 {
|
||||
panic("invalid percentile")
|
||||
}
|
||||
|
||||
if _, ok := jm.StatisticsSeries.Percentiles[p]; ok {
|
||||
continue
|
||||
}
|
||||
|
||||
percentiles := make([]Float, n)
|
||||
for i := 0; i < n; i++ {
|
||||
sorted := data[i]
|
||||
percentiles[i] = Float(sorted[(len(sorted)*p)/100])
|
||||
}
|
||||
|
||||
jm.StatisticsSeries.Percentiles[p] = percentiles
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user