mirror of
https://github.com/ClusterCockpit/cc-backend
synced 2025-12-31 10:56:15 +01:00
Move ccms api to memorystore and make it default. Rename metricDataDispatcher. Refactor and document.
This commit is contained in:
490
internal/metricdispatcher/dataLoader.go
Normal file
490
internal/metricdispatcher/dataLoader.go
Normal file
@@ -0,0 +1,490 @@
|
||||
// Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
|
||||
// All rights reserved. This file is part of cc-backend.
|
||||
// Use of this source code is governed by a MIT-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package metricdispatcher provides a unified interface for loading and caching job metric data.
|
||||
//
|
||||
// This package serves as a central dispatcher that routes metric data requests to the appropriate
|
||||
// backend based on job state. For running jobs, data is fetched from the metric store (e.g., cc-metric-store).
|
||||
// For completed jobs, data is retrieved from the file-based job archive.
|
||||
//
|
||||
// # Key Features
|
||||
//
|
||||
// - Automatic backend selection based on job state (running vs. archived)
|
||||
// - LRU cache for performance optimization (128 MB default cache size)
|
||||
// - Data resampling using Largest Triangle Three Bucket algorithm for archived data
|
||||
// - Automatic statistics series generation for jobs with many nodes
|
||||
// - Support for scoped metrics (node, socket, accelerator, core)
|
||||
//
|
||||
// # Cache Behavior
|
||||
//
|
||||
// Cached data has different TTL (time-to-live) values depending on job state:
|
||||
// - Running jobs: 2 minutes (data changes frequently)
|
||||
// - Completed jobs: 5 hours (data is static)
|
||||
//
|
||||
// The cache key is based on job ID, state, requested metrics, scopes, and resolution.
|
||||
//
|
||||
// # Usage
|
||||
//
|
||||
// The primary entry point is LoadData, which automatically handles both running and archived jobs:
|
||||
//
|
||||
// jobData, err := metricdispatcher.LoadData(job, metrics, scopes, ctx, resolution)
|
||||
// if err != nil {
|
||||
// // Handle error
|
||||
// }
|
||||
//
|
||||
// For statistics only, use LoadJobStats, LoadScopedJobStats, or LoadAverages depending on the required format.
|
||||
package metricdispatcher
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"math"
|
||||
"time"
|
||||
|
||||
"github.com/ClusterCockpit/cc-backend/internal/config"
|
||||
"github.com/ClusterCockpit/cc-backend/internal/memorystore"
|
||||
"github.com/ClusterCockpit/cc-backend/pkg/archive"
|
||||
cclog "github.com/ClusterCockpit/cc-lib/ccLogger"
|
||||
"github.com/ClusterCockpit/cc-lib/lrucache"
|
||||
"github.com/ClusterCockpit/cc-lib/resampler"
|
||||
"github.com/ClusterCockpit/cc-lib/schema"
|
||||
)
|
||||
|
||||
// cache is an LRU cache with 128 MB capacity for storing loaded job metric data.
|
||||
// The cache reduces load on both the metric store and archive backends.
|
||||
var cache *lrucache.Cache = lrucache.New(128 * 1024 * 1024)
|
||||
|
||||
// cacheKey generates a unique cache key for a job's metric data based on job ID, state,
|
||||
// requested metrics, scopes, and resolution. Duration and StartTime are intentionally excluded
|
||||
// because job.ID is more unique and the cache TTL ensures entries don't persist indefinitely.
|
||||
func cacheKey(
|
||||
job *schema.Job,
|
||||
metrics []string,
|
||||
scopes []schema.MetricScope,
|
||||
resolution int,
|
||||
) string {
|
||||
return fmt.Sprintf("%d(%s):[%v],[%v]-%d",
|
||||
job.ID, job.State, metrics, scopes, resolution)
|
||||
}
|
||||
|
||||
// LoadData retrieves metric data for a job from the appropriate backend (memory store for running jobs,
|
||||
// archive for completed jobs) and applies caching, resampling, and statistics generation as needed.
|
||||
//
|
||||
// For running jobs or when archive is disabled, data is fetched from the metric store.
|
||||
// For completed archived jobs, data is loaded from the job archive and resampled if needed.
|
||||
//
|
||||
// Parameters:
|
||||
// - job: The job for which to load metric data
|
||||
// - metrics: List of metric names to load (nil loads all metrics for the cluster)
|
||||
// - scopes: Metric scopes to include (nil defaults to node scope)
|
||||
// - ctx: Context for cancellation and timeouts
|
||||
// - resolution: Target number of data points for resampling (only applies to archived data)
|
||||
//
|
||||
// Returns the loaded job data and any error encountered. For partial errors (some metrics failed),
|
||||
// the function returns the successfully loaded data with a warning logged.
|
||||
func LoadData(job *schema.Job,
|
||||
metrics []string,
|
||||
scopes []schema.MetricScope,
|
||||
ctx context.Context,
|
||||
resolution int,
|
||||
) (schema.JobData, error) {
|
||||
data := cache.Get(cacheKey(job, metrics, scopes, resolution), func() (_ any, ttl time.Duration, size int) {
|
||||
var jd schema.JobData
|
||||
var err error
|
||||
|
||||
if job.State == schema.JobStateRunning ||
|
||||
job.MonitoringStatus == schema.MonitoringStatusRunningOrArchiving ||
|
||||
config.Keys.DisableArchive {
|
||||
|
||||
if scopes == nil {
|
||||
scopes = append(scopes, schema.MetricScopeNode)
|
||||
}
|
||||
|
||||
if metrics == nil {
|
||||
cluster := archive.GetCluster(job.Cluster)
|
||||
for _, mc := range cluster.MetricConfig {
|
||||
metrics = append(metrics, mc.Name)
|
||||
}
|
||||
}
|
||||
|
||||
jd, err = memorystore.LoadData(job, metrics, scopes, ctx, resolution)
|
||||
if err != nil {
|
||||
if len(jd) != 0 {
|
||||
cclog.Warnf("partial error loading metrics from store for job %d (user: %s, project: %s): %s",
|
||||
job.JobID, job.User, job.Project, err.Error())
|
||||
} else {
|
||||
cclog.Errorf("failed to load job data from metric store for job %d (user: %s, project: %s): %s",
|
||||
job.JobID, job.User, job.Project, err.Error())
|
||||
return err, 0, 0
|
||||
}
|
||||
}
|
||||
size = jd.Size()
|
||||
} else {
|
||||
var jdTemp schema.JobData
|
||||
jdTemp, err = archive.GetHandle().LoadJobData(job)
|
||||
if err != nil {
|
||||
cclog.Errorf("failed to load job data from archive for job %d (user: %s, project: %s): %s",
|
||||
job.JobID, job.User, job.Project, err.Error())
|
||||
return err, 0, 0
|
||||
}
|
||||
|
||||
jd = deepCopy(jdTemp)
|
||||
|
||||
// Resample archived data using Largest Triangle Three Bucket algorithm to reduce data points
|
||||
// to the requested resolution, improving transfer performance and client-side rendering.
|
||||
for _, v := range jd {
|
||||
for _, v_ := range v {
|
||||
timestep := int64(0)
|
||||
for i := 0; i < len(v_.Series); i += 1 {
|
||||
v_.Series[i].Data, timestep, err = resampler.LargestTriangleThreeBucket(v_.Series[i].Data, int64(v_.Timestep), int64(resolution))
|
||||
if err != nil {
|
||||
return err, 0, 0
|
||||
}
|
||||
}
|
||||
v_.Timestep = int(timestep)
|
||||
}
|
||||
}
|
||||
|
||||
// Filter job data to only include requested metrics and scopes, avoiding unnecessary data transfer.
|
||||
if metrics != nil || scopes != nil {
|
||||
if metrics == nil {
|
||||
metrics = make([]string, 0, len(jd))
|
||||
for k := range jd {
|
||||
metrics = append(metrics, k)
|
||||
}
|
||||
}
|
||||
|
||||
res := schema.JobData{}
|
||||
for _, metric := range metrics {
|
||||
if perscope, ok := jd[metric]; ok {
|
||||
if len(perscope) > 1 {
|
||||
subset := make(map[schema.MetricScope]*schema.JobMetric)
|
||||
for _, scope := range scopes {
|
||||
if jm, ok := perscope[scope]; ok {
|
||||
subset[scope] = jm
|
||||
}
|
||||
}
|
||||
|
||||
if len(subset) > 0 {
|
||||
perscope = subset
|
||||
}
|
||||
}
|
||||
|
||||
res[metric] = perscope
|
||||
}
|
||||
}
|
||||
jd = res
|
||||
}
|
||||
size = jd.Size()
|
||||
}
|
||||
|
||||
ttl = 5 * time.Hour
|
||||
if job.State == schema.JobStateRunning {
|
||||
ttl = 2 * time.Minute
|
||||
}
|
||||
|
||||
// Generate statistics series for jobs with many nodes to enable min/median/max graphs
|
||||
// instead of overwhelming the UI with individual node lines. Note that newly calculated
|
||||
// statistics use min/median/max, while archived statistics may use min/mean/max.
|
||||
const maxSeriesSize int = 15
|
||||
for _, scopes := range jd {
|
||||
for _, jm := range scopes {
|
||||
if jm.StatisticsSeries != nil || len(jm.Series) <= maxSeriesSize {
|
||||
continue
|
||||
}
|
||||
|
||||
jm.AddStatisticsSeries()
|
||||
}
|
||||
}
|
||||
|
||||
nodeScopeRequested := false
|
||||
for _, scope := range scopes {
|
||||
if scope == schema.MetricScopeNode {
|
||||
nodeScopeRequested = true
|
||||
}
|
||||
}
|
||||
|
||||
if nodeScopeRequested {
|
||||
jd.AddNodeScope("flops_any")
|
||||
jd.AddNodeScope("mem_bw")
|
||||
}
|
||||
|
||||
// Round Resulting Stat Values
|
||||
jd.RoundMetricStats()
|
||||
|
||||
return jd, ttl, size
|
||||
})
|
||||
|
||||
if err, ok := data.(error); ok {
|
||||
cclog.Errorf("error in cached dataset for job %d: %s", job.JobID, err.Error())
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return data.(schema.JobData), nil
|
||||
}
|
||||
|
||||
// LoadAverages computes average values for the specified metrics across all nodes of a job.
|
||||
// For running jobs, it loads statistics from the metric store. For completed jobs, it uses
|
||||
// the pre-calculated averages from the job archive. The results are appended to the data slice.
|
||||
func LoadAverages(
|
||||
job *schema.Job,
|
||||
metrics []string,
|
||||
data [][]schema.Float,
|
||||
ctx context.Context,
|
||||
) error {
|
||||
if job.State != schema.JobStateRunning && !config.Keys.DisableArchive {
|
||||
return archive.LoadAveragesFromArchive(job, metrics, data) // #166 change also here?
|
||||
}
|
||||
|
||||
stats, err := memorystore.LoadStats(job, metrics, ctx)
|
||||
if err != nil {
|
||||
cclog.Errorf("failed to load statistics from metric store for job %d (user: %s, project: %s): %s",
|
||||
job.JobID, job.User, job.Project, err.Error())
|
||||
return err
|
||||
}
|
||||
|
||||
for i, m := range metrics {
|
||||
nodes, ok := stats[m]
|
||||
if !ok {
|
||||
data[i] = append(data[i], schema.NaN)
|
||||
continue
|
||||
}
|
||||
|
||||
sum := 0.0
|
||||
for _, node := range nodes {
|
||||
sum += node.Avg
|
||||
}
|
||||
data[i] = append(data[i], schema.Float(sum))
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// LoadScopedJobStats retrieves job statistics organized by metric scope (node, socket, core, accelerator).
|
||||
// For running jobs, statistics are computed from the metric store. For completed jobs, pre-calculated
|
||||
// statistics are loaded from the job archive.
|
||||
func LoadScopedJobStats(
|
||||
job *schema.Job,
|
||||
metrics []string,
|
||||
scopes []schema.MetricScope,
|
||||
ctx context.Context,
|
||||
) (schema.ScopedJobStats, error) {
|
||||
if job.State != schema.JobStateRunning && !config.Keys.DisableArchive {
|
||||
return archive.LoadScopedStatsFromArchive(job, metrics, scopes)
|
||||
}
|
||||
|
||||
scopedStats, err := memorystore.LoadScopedStats(job, metrics, scopes, ctx)
|
||||
if err != nil {
|
||||
cclog.Errorf("failed to load scoped statistics from metric store for job %d (user: %s, project: %s): %s",
|
||||
job.JobID, job.User, job.Project, err.Error())
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return scopedStats, nil
|
||||
}
|
||||
|
||||
// LoadJobStats retrieves aggregated statistics (min/avg/max) for each requested metric across all job nodes.
|
||||
// For running jobs, statistics are computed from the metric store. For completed jobs, pre-calculated
|
||||
// statistics are loaded from the job archive.
|
||||
func LoadJobStats(
|
||||
job *schema.Job,
|
||||
metrics []string,
|
||||
ctx context.Context,
|
||||
) (map[string]schema.MetricStatistics, error) {
|
||||
if job.State != schema.JobStateRunning && !config.Keys.DisableArchive {
|
||||
return archive.LoadStatsFromArchive(job, metrics)
|
||||
}
|
||||
|
||||
data := make(map[string]schema.MetricStatistics, len(metrics))
|
||||
|
||||
stats, err := memorystore.LoadStats(job, metrics, ctx)
|
||||
if err != nil {
|
||||
cclog.Errorf("failed to load statistics from metric store for job %d (user: %s, project: %s): %s",
|
||||
job.JobID, job.User, job.Project, err.Error())
|
||||
return data, err
|
||||
}
|
||||
|
||||
for _, m := range metrics {
|
||||
sum, avg, min, max := 0.0, 0.0, 0.0, 0.0
|
||||
nodes, ok := stats[m]
|
||||
if !ok {
|
||||
data[m] = schema.MetricStatistics{Min: min, Avg: avg, Max: max}
|
||||
continue
|
||||
}
|
||||
|
||||
for _, node := range nodes {
|
||||
sum += node.Avg
|
||||
min = math.Min(min, node.Min)
|
||||
max = math.Max(max, node.Max)
|
||||
}
|
||||
|
||||
data[m] = schema.MetricStatistics{
|
||||
Avg: (math.Round((sum/float64(job.NumNodes))*100) / 100),
|
||||
Min: (math.Round(min*100) / 100),
|
||||
Max: (math.Round(max*100) / 100),
|
||||
}
|
||||
}
|
||||
|
||||
return data, nil
|
||||
}
|
||||
|
||||
// LoadNodeData retrieves metric data for specific nodes in a cluster within a time range.
|
||||
// This is used for node monitoring views and system status pages. Data is always fetched from
|
||||
// the metric store (not the archive) since it's for current/recent node status monitoring.
|
||||
//
|
||||
// Returns a nested map structure: node -> metric -> scoped data.
|
||||
func LoadNodeData(
|
||||
cluster string,
|
||||
metrics, nodes []string,
|
||||
scopes []schema.MetricScope,
|
||||
from, to time.Time,
|
||||
ctx context.Context,
|
||||
) (map[string]map[string][]*schema.JobMetric, error) {
|
||||
if metrics == nil {
|
||||
for _, m := range archive.GetCluster(cluster).MetricConfig {
|
||||
metrics = append(metrics, m.Name)
|
||||
}
|
||||
}
|
||||
|
||||
data, err := memorystore.LoadNodeData(cluster, metrics, nodes, scopes, from, to, ctx)
|
||||
if err != nil {
|
||||
if len(data) != 0 {
|
||||
cclog.Warnf("partial error loading node data from metric store for cluster %s: %s", cluster, err.Error())
|
||||
} else {
|
||||
cclog.Errorf("failed to load node data from metric store for cluster %s: %s", cluster, err.Error())
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if data == nil {
|
||||
return nil, fmt.Errorf("metric store for cluster '%s' does not support node data queries", cluster)
|
||||
}
|
||||
|
||||
return data, nil
|
||||
}
|
||||
|
||||
// LoadNodeListData retrieves time-series metric data for multiple nodes within a time range,
|
||||
// with optional resampling and automatic statistics generation for large datasets.
|
||||
// This is used for comparing multiple nodes or displaying node status over time.
|
||||
//
|
||||
// Returns a map of node names to their job-like metric data structures.
|
||||
func LoadNodeListData(
|
||||
cluster, subCluster string,
|
||||
nodes []string,
|
||||
metrics []string,
|
||||
scopes []schema.MetricScope,
|
||||
resolution int,
|
||||
from, to time.Time,
|
||||
ctx context.Context,
|
||||
) (map[string]schema.JobData, error) {
|
||||
if metrics == nil {
|
||||
for _, m := range archive.GetCluster(cluster).MetricConfig {
|
||||
metrics = append(metrics, m.Name)
|
||||
}
|
||||
}
|
||||
|
||||
data, err := memorystore.LoadNodeListData(cluster, subCluster, nodes, metrics, scopes, resolution, from, to, ctx)
|
||||
if err != nil {
|
||||
if len(data) != 0 {
|
||||
cclog.Warnf("partial error loading node list data from metric store for cluster %s, subcluster %s: %s",
|
||||
cluster, subCluster, err.Error())
|
||||
} else {
|
||||
cclog.Errorf("failed to load node list data from metric store for cluster %s, subcluster %s: %s",
|
||||
cluster, subCluster, err.Error())
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// Generate statistics series for datasets with many series to improve visualization performance.
|
||||
// Statistics are calculated as min/median/max.
|
||||
const maxSeriesSize int = 8
|
||||
for _, jd := range data {
|
||||
for _, scopes := range jd {
|
||||
for _, jm := range scopes {
|
||||
if jm.StatisticsSeries != nil || len(jm.Series) < maxSeriesSize {
|
||||
continue
|
||||
}
|
||||
jm.AddStatisticsSeries()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if data == nil {
|
||||
return nil, fmt.Errorf("metric store for cluster '%s' does not support node list queries", cluster)
|
||||
}
|
||||
|
||||
return data, nil
|
||||
}
|
||||
|
||||
// deepCopy creates a deep copy of JobData to prevent cache corruption when modifying
|
||||
// archived data (e.g., during resampling). This ensures the cached archive data remains
|
||||
// immutable while allowing per-request transformations.
|
||||
func deepCopy(source schema.JobData) schema.JobData {
|
||||
result := make(schema.JobData, len(source))
|
||||
|
||||
for metricName, scopeMap := range source {
|
||||
result[metricName] = make(map[schema.MetricScope]*schema.JobMetric, len(scopeMap))
|
||||
|
||||
for scope, jobMetric := range scopeMap {
|
||||
result[metricName][scope] = copyJobMetric(jobMetric)
|
||||
}
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
func copyJobMetric(src *schema.JobMetric) *schema.JobMetric {
|
||||
dst := &schema.JobMetric{
|
||||
Timestep: src.Timestep,
|
||||
Unit: src.Unit,
|
||||
Series: make([]schema.Series, len(src.Series)),
|
||||
}
|
||||
|
||||
for i := range src.Series {
|
||||
dst.Series[i] = copySeries(&src.Series[i])
|
||||
}
|
||||
|
||||
if src.StatisticsSeries != nil {
|
||||
dst.StatisticsSeries = copyStatisticsSeries(src.StatisticsSeries)
|
||||
}
|
||||
|
||||
return dst
|
||||
}
|
||||
|
||||
func copySeries(src *schema.Series) schema.Series {
|
||||
dst := schema.Series{
|
||||
Hostname: src.Hostname,
|
||||
Id: src.Id,
|
||||
Statistics: src.Statistics,
|
||||
Data: make([]schema.Float, len(src.Data)),
|
||||
}
|
||||
|
||||
copy(dst.Data, src.Data)
|
||||
return dst
|
||||
}
|
||||
|
||||
func copyStatisticsSeries(src *schema.StatsSeries) *schema.StatsSeries {
|
||||
dst := &schema.StatsSeries{
|
||||
Min: make([]schema.Float, len(src.Min)),
|
||||
Mean: make([]schema.Float, len(src.Mean)),
|
||||
Median: make([]schema.Float, len(src.Median)),
|
||||
Max: make([]schema.Float, len(src.Max)),
|
||||
}
|
||||
|
||||
copy(dst.Min, src.Min)
|
||||
copy(dst.Mean, src.Mean)
|
||||
copy(dst.Median, src.Median)
|
||||
copy(dst.Max, src.Max)
|
||||
|
||||
if len(src.Percentiles) > 0 {
|
||||
dst.Percentiles = make(map[int][]schema.Float, len(src.Percentiles))
|
||||
for percentile, values := range src.Percentiles {
|
||||
dst.Percentiles[percentile] = make([]schema.Float, len(values))
|
||||
copy(dst.Percentiles[percentile], values)
|
||||
}
|
||||
}
|
||||
|
||||
return dst
|
||||
}
|
||||
125
internal/metricdispatcher/dataLoader_test.go
Normal file
125
internal/metricdispatcher/dataLoader_test.go
Normal file
@@ -0,0 +1,125 @@
|
||||
// Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
|
||||
// All rights reserved. This file is part of cc-backend.
|
||||
// Use of this source code is governed by a MIT-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package metricdispatcher
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/ClusterCockpit/cc-lib/schema"
|
||||
)
|
||||
|
||||
func TestDeepCopy(t *testing.T) {
|
||||
nodeId := "0"
|
||||
original := schema.JobData{
|
||||
"cpu_load": {
|
||||
schema.MetricScopeNode: &schema.JobMetric{
|
||||
Timestep: 60,
|
||||
Unit: schema.Unit{Base: "load", Prefix: ""},
|
||||
Series: []schema.Series{
|
||||
{
|
||||
Hostname: "node001",
|
||||
Id: &nodeId,
|
||||
Data: []schema.Float{1.0, 2.0, 3.0},
|
||||
Statistics: schema.MetricStatistics{
|
||||
Min: 1.0,
|
||||
Avg: 2.0,
|
||||
Max: 3.0,
|
||||
},
|
||||
},
|
||||
},
|
||||
StatisticsSeries: &schema.StatsSeries{
|
||||
Min: []schema.Float{1.0, 1.5, 2.0},
|
||||
Mean: []schema.Float{2.0, 2.5, 3.0},
|
||||
Median: []schema.Float{2.0, 2.5, 3.0},
|
||||
Max: []schema.Float{3.0, 3.5, 4.0},
|
||||
Percentiles: map[int][]schema.Float{
|
||||
25: {1.5, 2.0, 2.5},
|
||||
75: {2.5, 3.0, 3.5},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
copied := deepCopy(original)
|
||||
|
||||
original["cpu_load"][schema.MetricScopeNode].Series[0].Data[0] = 999.0
|
||||
original["cpu_load"][schema.MetricScopeNode].StatisticsSeries.Min[0] = 888.0
|
||||
original["cpu_load"][schema.MetricScopeNode].StatisticsSeries.Percentiles[25][0] = 777.0
|
||||
|
||||
if copied["cpu_load"][schema.MetricScopeNode].Series[0].Data[0] != 1.0 {
|
||||
t.Errorf("Series data was not deeply copied: got %v, want 1.0",
|
||||
copied["cpu_load"][schema.MetricScopeNode].Series[0].Data[0])
|
||||
}
|
||||
|
||||
if copied["cpu_load"][schema.MetricScopeNode].StatisticsSeries.Min[0] != 1.0 {
|
||||
t.Errorf("StatisticsSeries was not deeply copied: got %v, want 1.0",
|
||||
copied["cpu_load"][schema.MetricScopeNode].StatisticsSeries.Min[0])
|
||||
}
|
||||
|
||||
if copied["cpu_load"][schema.MetricScopeNode].StatisticsSeries.Percentiles[25][0] != 1.5 {
|
||||
t.Errorf("Percentiles was not deeply copied: got %v, want 1.5",
|
||||
copied["cpu_load"][schema.MetricScopeNode].StatisticsSeries.Percentiles[25][0])
|
||||
}
|
||||
|
||||
if copied["cpu_load"][schema.MetricScopeNode].Timestep != 60 {
|
||||
t.Errorf("Timestep not copied correctly: got %v, want 60",
|
||||
copied["cpu_load"][schema.MetricScopeNode].Timestep)
|
||||
}
|
||||
|
||||
if copied["cpu_load"][schema.MetricScopeNode].Series[0].Hostname != "node001" {
|
||||
t.Errorf("Hostname not copied correctly: got %v, want node001",
|
||||
copied["cpu_load"][schema.MetricScopeNode].Series[0].Hostname)
|
||||
}
|
||||
}
|
||||
|
||||
func TestDeepCopyNilStatisticsSeries(t *testing.T) {
|
||||
original := schema.JobData{
|
||||
"mem_used": {
|
||||
schema.MetricScopeNode: &schema.JobMetric{
|
||||
Timestep: 60,
|
||||
Series: []schema.Series{
|
||||
{
|
||||
Hostname: "node001",
|
||||
Data: []schema.Float{1.0, 2.0},
|
||||
},
|
||||
},
|
||||
StatisticsSeries: nil,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
copied := deepCopy(original)
|
||||
|
||||
if copied["mem_used"][schema.MetricScopeNode].StatisticsSeries != nil {
|
||||
t.Errorf("StatisticsSeries should be nil, got %v",
|
||||
copied["mem_used"][schema.MetricScopeNode].StatisticsSeries)
|
||||
}
|
||||
}
|
||||
|
||||
func TestDeepCopyEmptyPercentiles(t *testing.T) {
|
||||
original := schema.JobData{
|
||||
"cpu_load": {
|
||||
schema.MetricScopeNode: &schema.JobMetric{
|
||||
Timestep: 60,
|
||||
Series: []schema.Series{},
|
||||
StatisticsSeries: &schema.StatsSeries{
|
||||
Min: []schema.Float{1.0},
|
||||
Mean: []schema.Float{2.0},
|
||||
Median: []schema.Float{2.0},
|
||||
Max: []schema.Float{3.0},
|
||||
Percentiles: nil,
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
copied := deepCopy(original)
|
||||
|
||||
if copied["cpu_load"][schema.MetricScopeNode].StatisticsSeries.Percentiles != nil {
|
||||
t.Errorf("Percentiles should be nil when source is nil/empty")
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user