mirror of
https://github.com/ClusterCockpit/cc-backend
synced 2025-01-13 21:19:06 +01:00
Merge branch 'hotfix' of https://github.com/ClusterCockpit/cc-backend into hotfix
This commit is contained in:
commit
5743f4fa2a
@ -41,8 +41,9 @@ versions of third party packages.
|
|||||||
|
|
||||||
## Demo Setup
|
## Demo Setup
|
||||||
|
|
||||||
We provide a shell skript that downloads demo data and automatically builds and starts cc-backend.
|
We provide a shell skript that downloads demo data and automatically builds and
|
||||||
You need `wget`, `go`, `node`, `rollup` and `yarn` in your path to start the demo. The demo will download 32MB of data (223MB on disk).
|
starts cc-backend. You need `wget`, `go`, `node`, `npm` in your path to start
|
||||||
|
the demo. The demo will download 32MB of data (223MB on disk).
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
git clone https://github.com/ClusterCockpit/cc-backend.git
|
git clone https://github.com/ClusterCockpit/cc-backend.git
|
||||||
|
@ -0,0 +1,78 @@
|
|||||||
|
The job archive specifies an exchange format for job meta and performance metric
|
||||||
|
data. It consists of two parts:
|
||||||
|
* a [SQLite database schema](https://github.com/ClusterCockpit/cc-backend/wiki/Job-Archive#sqlite-database-schema) for job meta data and performance statistics
|
||||||
|
* a [Json file format](https://github.com/ClusterCockpit/cc-backend/wiki/Job-Archive#json-file-format) together with a [Directory hierarchy specification](https://github.com/ClusterCockpit/cc-backend/wiki/Job-Archive#directory-hierarchy-specification)
|
||||||
|
|
||||||
|
By using an open, portable and simple specification based on files it is
|
||||||
|
possible to exchange job performance data for research and analysis purposes as
|
||||||
|
well as use it as a robust way for archiving job performance data to disk.
|
||||||
|
|
||||||
|
# SQLite database schema
|
||||||
|
## Introduction
|
||||||
|
|
||||||
|
A SQLite 3 database schema is provided to standardize the job meta data
|
||||||
|
information in a portable way. The schema also includes optional columns for job
|
||||||
|
performance statistics (called a job performance footprint). The database acts
|
||||||
|
as a front end to filter and select subsets of job IDs, that are the keys to get
|
||||||
|
the full job performance data in the job performance tree hierarchy.
|
||||||
|
|
||||||
|
## Database schema
|
||||||
|
|
||||||
|
The schema includes 3 tables: the job table, a tag table and a jobtag table
|
||||||
|
representing the MANY-TO-MANY relation between jobs and tags. The SQL schema is
|
||||||
|
specified
|
||||||
|
[here](https://github.com/ClusterCockpit/cc-specifications/blob/master/schemas/jobs-sqlite.sql).
|
||||||
|
Explanation of the various columns including the JSON datatypes is documented
|
||||||
|
[here](https://github.com/ClusterCockpit/cc-specifications/blob/master/datastructures/job-meta.schema.json).
|
||||||
|
|
||||||
|
# Directory hierarchy specification
|
||||||
|
|
||||||
|
## Specification
|
||||||
|
|
||||||
|
To manage the number of directories within a single directory a tree approach is
|
||||||
|
used splitting the integer job ID. The job id is split in junks of 1000 each.
|
||||||
|
Usually 2 layers of directories is sufficient but the concept can be used for an
|
||||||
|
arbitrary number of layers.
|
||||||
|
|
||||||
|
For a 2 layer schema this can be achieved with (code example in Perl):
|
||||||
|
``` perl
|
||||||
|
$level1 = $jobID/1000;
|
||||||
|
$level2 = $jobID%1000;
|
||||||
|
$dstPath = sprintf("%s/%s/%d/%03d", $trunk, $destdir, $level1, $level2);
|
||||||
|
```
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
For the job ID 1034871 the directory path is `./1034/871/`.
|
||||||
|
|
||||||
|
# Json file format
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
Every cluster must be configured in a `cluster.json` file.
|
||||||
|
|
||||||
|
The job data consists of two files:
|
||||||
|
* `meta.json`: Contains job meta information and job statistics.
|
||||||
|
* `data.json`: Contains complete job data with time series
|
||||||
|
|
||||||
|
The description of the json format specification is available as [[json
|
||||||
|
schema|https://json-schema.org/]] format file. The latest version of the json
|
||||||
|
schema is part of the `cc-backend` source tree. For external reference it is
|
||||||
|
also available in a separate repository.
|
||||||
|
|
||||||
|
## Specification `cluster.json`
|
||||||
|
|
||||||
|
The json schema specification is available
|
||||||
|
[here](https://github.com/ClusterCockpit/cc-specifications/blob/master/datastructures/cluster.schema.json).
|
||||||
|
|
||||||
|
## Specification `meta.json`
|
||||||
|
|
||||||
|
The json schema specification is available
|
||||||
|
[here](https://github.com/RRZE-HPC/HPCJobDatabase/blob/master/json-schema/job-meta.schema.json).
|
||||||
|
|
||||||
|
## Specification `data.json`
|
||||||
|
|
||||||
|
The json schema specification is available
|
||||||
|
[here](https://github.com/RRZE-HPC/HPCJobDatabase/blob/master/json-schema/job-data.schema.json).
|
||||||
|
Metric time series data is stored for a fixed time step. The time step is set
|
||||||
|
per metric. If no value is available for a metric time series data timestamp
|
||||||
|
`null` is entered.
|
@ -363,6 +363,7 @@ func (fsa *FsArchive) CompressLast(starttime int64) int64 {
|
|||||||
b, err := os.ReadFile(filename)
|
b, err := os.ReadFile(filename)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
log.Errorf("fsBackend Compress - %v", err)
|
log.Errorf("fsBackend Compress - %v", err)
|
||||||
|
os.WriteFile(filename, []byte(fmt.Sprintf("%d", starttime)), 0644)
|
||||||
return starttime
|
return starttime
|
||||||
}
|
}
|
||||||
last, err := strconv.ParseInt(strings.TrimSuffix(string(b), "\n"), 10, 64)
|
last, err := strconv.ParseInt(strings.TrimSuffix(string(b), "\n"), 10, 64)
|
||||||
|
Loading…
Reference in New Issue
Block a user