mirror of
https://github.com/ClusterCockpit/cc-backend
synced 2024-11-10 08:57:25 +01:00
324 lines
6.9 KiB
Go
324 lines
6.9 KiB
Go
|
// Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg.
|
||
|
// All rights reserved.
|
||
|
// Use of this source code is governed by a MIT-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
package main
|
||
|
|
||
|
import (
|
||
|
"fmt"
|
||
|
"io"
|
||
|
"math"
|
||
|
"sort"
|
||
|
"unsafe"
|
||
|
)
|
||
|
|
||
|
type JobData map[string]map[MetricScope]*JobMetric
|
||
|
|
||
|
type JobMetric struct {
|
||
|
Unit string `json:"unit"`
|
||
|
Scope MetricScope `json:"scope"`
|
||
|
Timestep int `json:"timestep"`
|
||
|
Series []Series `json:"series"`
|
||
|
StatisticsSeries *StatsSeries `json:"statisticsSeries"`
|
||
|
}
|
||
|
|
||
|
type Series struct {
|
||
|
Hostname string `json:"hostname"`
|
||
|
Id *int `json:"id,omitempty"`
|
||
|
Statistics *MetricStatistics `json:"statistics"`
|
||
|
Data []Float `json:"data"`
|
||
|
}
|
||
|
|
||
|
type MetricStatistics struct {
|
||
|
Avg float64 `json:"avg"`
|
||
|
Min float64 `json:"min"`
|
||
|
Max float64 `json:"max"`
|
||
|
}
|
||
|
|
||
|
type StatsSeries struct {
|
||
|
Mean []Float `json:"mean"`
|
||
|
Min []Float `json:"min"`
|
||
|
Max []Float `json:"max"`
|
||
|
Percentiles map[int][]Float `json:"percentiles,omitempty"`
|
||
|
}
|
||
|
|
||
|
type MetricScope string
|
||
|
|
||
|
const (
|
||
|
MetricScopeInvalid MetricScope = "invalid_scope"
|
||
|
|
||
|
MetricScopeNode MetricScope = "node"
|
||
|
MetricScopeSocket MetricScope = "socket"
|
||
|
MetricScopeMemoryDomain MetricScope = "memoryDomain"
|
||
|
MetricScopeCore MetricScope = "core"
|
||
|
MetricScopeHWThread MetricScope = "hwthread"
|
||
|
|
||
|
MetricScopeAccelerator MetricScope = "accelerator"
|
||
|
)
|
||
|
|
||
|
var metricScopeGranularity map[MetricScope]int = map[MetricScope]int{
|
||
|
MetricScopeNode: 10,
|
||
|
MetricScopeSocket: 5,
|
||
|
MetricScopeMemoryDomain: 3,
|
||
|
MetricScopeCore: 2,
|
||
|
MetricScopeHWThread: 1,
|
||
|
|
||
|
MetricScopeAccelerator: 5, // Special/Randomly choosen
|
||
|
|
||
|
MetricScopeInvalid: -1,
|
||
|
}
|
||
|
|
||
|
func (e *MetricScope) LT(other MetricScope) bool {
|
||
|
a := metricScopeGranularity[*e]
|
||
|
b := metricScopeGranularity[other]
|
||
|
return a < b
|
||
|
}
|
||
|
|
||
|
func (e *MetricScope) LTE(other MetricScope) bool {
|
||
|
a := metricScopeGranularity[*e]
|
||
|
b := metricScopeGranularity[other]
|
||
|
return a <= b
|
||
|
}
|
||
|
|
||
|
func (e *MetricScope) Max(other MetricScope) MetricScope {
|
||
|
a := metricScopeGranularity[*e]
|
||
|
b := metricScopeGranularity[other]
|
||
|
if a > b {
|
||
|
return *e
|
||
|
}
|
||
|
return other
|
||
|
}
|
||
|
|
||
|
func (e *MetricScope) UnmarshalGQL(v interface{}) error {
|
||
|
str, ok := v.(string)
|
||
|
if !ok {
|
||
|
return fmt.Errorf("enums must be strings")
|
||
|
}
|
||
|
|
||
|
*e = MetricScope(str)
|
||
|
if !e.Valid() {
|
||
|
return fmt.Errorf("%s is not a valid MetricScope", str)
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (e MetricScope) MarshalGQL(w io.Writer) {
|
||
|
fmt.Fprintf(w, "\"%s\"", e)
|
||
|
}
|
||
|
|
||
|
func (e MetricScope) Valid() bool {
|
||
|
gran, ok := metricScopeGranularity[e]
|
||
|
return ok && gran > 0
|
||
|
}
|
||
|
|
||
|
func (jd *JobData) Size() int {
|
||
|
n := 128
|
||
|
for _, scopes := range *jd {
|
||
|
for _, metric := range scopes {
|
||
|
if metric.StatisticsSeries != nil {
|
||
|
n += len(metric.StatisticsSeries.Max)
|
||
|
n += len(metric.StatisticsSeries.Mean)
|
||
|
n += len(metric.StatisticsSeries.Min)
|
||
|
}
|
||
|
|
||
|
for _, series := range metric.Series {
|
||
|
n += len(series.Data)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return n * int(unsafe.Sizeof(Float(0)))
|
||
|
}
|
||
|
|
||
|
const smooth bool = false
|
||
|
|
||
|
func (jm *JobMetric) AddStatisticsSeries() {
|
||
|
if jm.StatisticsSeries != nil || len(jm.Series) < 4 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
n, m := 0, len(jm.Series[0].Data)
|
||
|
for _, series := range jm.Series {
|
||
|
if len(series.Data) > n {
|
||
|
n = len(series.Data)
|
||
|
}
|
||
|
if len(series.Data) < m {
|
||
|
m = len(series.Data)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
min, mean, max := make([]Float, n), make([]Float, n), make([]Float, n)
|
||
|
i := 0
|
||
|
for ; i < m; i++ {
|
||
|
smin, ssum, smax := math.MaxFloat32, 0.0, -math.MaxFloat32
|
||
|
notnan := 0
|
||
|
for j := 0; j < len(jm.Series); j++ {
|
||
|
x := float64(jm.Series[j].Data[i])
|
||
|
if math.IsNaN(x) {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
notnan += 1
|
||
|
ssum += x
|
||
|
smin = math.Min(smin, x)
|
||
|
smax = math.Max(smax, x)
|
||
|
}
|
||
|
|
||
|
if notnan < 3 {
|
||
|
min[i] = NaN
|
||
|
mean[i] = NaN
|
||
|
max[i] = NaN
|
||
|
} else {
|
||
|
min[i] = Float(smin)
|
||
|
mean[i] = Float(ssum / float64(notnan))
|
||
|
max[i] = Float(smax)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for ; i < n; i++ {
|
||
|
min[i] = NaN
|
||
|
mean[i] = NaN
|
||
|
max[i] = NaN
|
||
|
}
|
||
|
|
||
|
if smooth {
|
||
|
for i := 2; i < len(mean)-2; i++ {
|
||
|
if min[i].IsNaN() {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
min[i] = (min[i-2] + min[i-1] + min[i] + min[i+1] + min[i+2]) / 5
|
||
|
max[i] = (max[i-2] + max[i-1] + max[i] + max[i+1] + max[i+2]) / 5
|
||
|
mean[i] = (mean[i-2] + mean[i-1] + mean[i] + mean[i+1] + mean[i+2]) / 5
|
||
|
}
|
||
|
}
|
||
|
|
||
|
jm.StatisticsSeries = &StatsSeries{Mean: mean, Min: min, Max: max}
|
||
|
}
|
||
|
|
||
|
func (jd *JobData) AddNodeScope(metric string) bool {
|
||
|
scopes, ok := (*jd)[metric]
|
||
|
if !ok {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
var maxScope MetricScope = MetricScopeInvalid
|
||
|
for scope := range scopes {
|
||
|
maxScope = maxScope.Max(scope)
|
||
|
}
|
||
|
|
||
|
if maxScope == MetricScopeInvalid || maxScope == MetricScopeNode {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
jm := scopes[maxScope]
|
||
|
hosts := make(map[string][]Series, 32)
|
||
|
for _, series := range jm.Series {
|
||
|
hosts[series.Hostname] = append(hosts[series.Hostname], series)
|
||
|
}
|
||
|
|
||
|
nodeJm := &JobMetric{
|
||
|
Unit: jm.Unit,
|
||
|
Scope: MetricScopeNode,
|
||
|
Timestep: jm.Timestep,
|
||
|
Series: make([]Series, 0, len(hosts)),
|
||
|
}
|
||
|
for hostname, series := range hosts {
|
||
|
min, sum, max := math.MaxFloat32, 0.0, -math.MaxFloat32
|
||
|
for _, series := range series {
|
||
|
if series.Statistics == nil {
|
||
|
min, sum, max = math.NaN(), math.NaN(), math.NaN()
|
||
|
break
|
||
|
}
|
||
|
sum += series.Statistics.Avg
|
||
|
min = math.Min(min, series.Statistics.Min)
|
||
|
max = math.Max(max, series.Statistics.Max)
|
||
|
}
|
||
|
|
||
|
n, m := 0, len(jm.Series[0].Data)
|
||
|
for _, series := range jm.Series {
|
||
|
if len(series.Data) > n {
|
||
|
n = len(series.Data)
|
||
|
}
|
||
|
if len(series.Data) < m {
|
||
|
m = len(series.Data)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
i, data := 0, make([]Float, len(series[0].Data))
|
||
|
for ; i < m; i++ {
|
||
|
x := Float(0.0)
|
||
|
for _, series := range jm.Series {
|
||
|
x += series.Data[i]
|
||
|
}
|
||
|
data[i] = x
|
||
|
}
|
||
|
|
||
|
for ; i < n; i++ {
|
||
|
data[i] = NaN
|
||
|
}
|
||
|
|
||
|
nodeJm.Series = append(nodeJm.Series, Series{
|
||
|
Hostname: hostname,
|
||
|
Statistics: &MetricStatistics{Min: min, Avg: sum / float64(len(series)), Max: max},
|
||
|
Data: data,
|
||
|
})
|
||
|
}
|
||
|
|
||
|
scopes[MetricScopeNode] = nodeJm
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
func (jm *JobMetric) AddPercentiles(ps []int) bool {
|
||
|
if jm.StatisticsSeries == nil {
|
||
|
jm.AddStatisticsSeries()
|
||
|
}
|
||
|
|
||
|
if len(jm.Series) < 3 {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
if jm.StatisticsSeries.Percentiles == nil {
|
||
|
jm.StatisticsSeries.Percentiles = make(map[int][]Float, len(ps))
|
||
|
}
|
||
|
|
||
|
n := 0
|
||
|
for _, series := range jm.Series {
|
||
|
if len(series.Data) > n {
|
||
|
n = len(series.Data)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
data := make([][]float64, n)
|
||
|
for i := 0; i < n; i++ {
|
||
|
vals := make([]float64, 0, len(jm.Series))
|
||
|
for _, series := range jm.Series {
|
||
|
if i < len(series.Data) {
|
||
|
vals = append(vals, float64(series.Data[i]))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sort.Float64s(vals)
|
||
|
data[i] = vals
|
||
|
}
|
||
|
|
||
|
for _, p := range ps {
|
||
|
if p < 1 || p > 99 {
|
||
|
panic("invalid percentile")
|
||
|
}
|
||
|
|
||
|
if _, ok := jm.StatisticsSeries.Percentiles[p]; ok {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
percentiles := make([]Float, n)
|
||
|
for i := 0; i < n; i++ {
|
||
|
sorted := data[i]
|
||
|
percentiles[i] = Float(sorted[(len(sorted)*p)/100])
|
||
|
}
|
||
|
|
||
|
jm.StatisticsSeries.Percentiles[p] = percentiles
|
||
|
}
|
||
|
|
||
|
return true
|
||
|
}
|