cc-backend/web/frontend/src/Status.root.svelte

185 lines
7.8 KiB
Svelte
Raw Normal View History

2022-06-22 11:20:57 +02:00
<script>
import Refresher from './joblist/Refresher.svelte'
import Roofline, { transformPerNodeData } from './plots/Roofline.svelte'
import Histogram from './plots/Histogram.svelte'
import { Row, Col, Spinner, Card, Table, Progress } from 'sveltestrap'
import { init } from './utils.js'
import { operationStore, query } from '@urql/svelte'
const { query: initq } = init()
export let cluster
let plotWidths = [], colWidth1 = 0, colWidth2
let from = new Date(Date.now() - 5 * 60 * 1000), to = new Date(Date.now())
const mainQuery = operationStore(`query($cluster: String!, $filter: [JobFilter!]!, $metrics: [String!], $from: Time!, $to: Time!) {
nodeMetrics(cluster: $cluster, metrics: $metrics, from: $from, to: $to) {
host,
subCluster,
metrics {
name,
metric {
scope
timestep,
series { data }
}
}
}
stats: jobsStatistics(filter: $filter) {
histDuration { count, value }
histNumNodes { count, value }
}
allocatedNodes(cluster: $cluster) { name, count }
topUsers: jobsCount(filter: $filter, groupBy: USER, weight: NODE_COUNT, limit: 10) { name, count }
topProjects: jobsCount(filter: $filter, groupBy: PROJECT, weight: NODE_COUNT, limit: 10) { name, count }
}`, {
cluster: cluster,
metrics: ['flops_any', 'mem_bw'],
from: from.toISOString(),
to: to.toISOString(),
filter: [{ state: ['running'] }, { cluster: { eq: cluster } }]
})
const sumUp = (data, subcluster, metric) => data.reduce((sum, node) => node.subCluster == subcluster
? sum + (node.metrics.find(m => m.name == metric)?.metric.series.reduce((sum, series) => sum + series.data[series.data.length - 1], 0) || 0)
: sum, 0)
let allocatedNodes = {}, flopRate = {}, memBwRate = {}
$: if ($initq.data && $mainQuery.data) {
let subClusters = $initq.data.clusters.find(c => c.name == cluster).subClusters
for (let subCluster of subClusters) {
allocatedNodes[subCluster.name] = $mainQuery.data.allocatedNodes.find(({ name }) => name == subCluster.name)?.count || 0
flopRate[subCluster.name] = Math.floor(sumUp($mainQuery.data.nodeMetrics, subCluster.name, 'flops_any') * 100) / 100
memBwRate[subCluster.name] = Math.floor(sumUp($mainQuery.data.nodeMetrics, subCluster.name, 'mem_bw') * 100) / 100
}
}
query(mainQuery)
</script>
<Row>
<Col xs="auto">
{#if $initq.fetching || $mainQuery.fetching}
<Spinner/>
{:else if $initq.error}
<Card body color="danger">{$initq.error.message}</Card>
{:else}
<!-- ... -->
{/if}
</Col>
<Col xs="auto" style="margin-left: auto;">
<Refresher initially={120} on:reload={() => {
console.log('reload...')
from = new Date(Date.now() - 5 * 60 * 1000)
to = new Date(Date.now())
$mainQuery.variables = { ...$mainQuery.variables, from: from, to: to }
$mainQuery.reexecute({ requestPolicy: 'network-only' })
}} />
</Col>
</Row>
{#if $mainQuery.error}
<Row>
<Col>
<Card body color="danger">{$mainQuery.error.message}</Card>
</Col>
</Row>
{/if}
{#if $initq.data && $mainQuery.data}
{#each $initq.data.clusters.find(c => c.name == cluster).subClusters as subCluster, i}
<Row>
<Col xs="3">
<Table>
<tr>
<th scope="col">SubCluster</th>
<td colspan="2">{subCluster.name}</td>
</tr>
<tr>
<th scope="col">Allocated Nodes</th>
<td style="min-width: 75px;"><div class="col"><Progress value={allocatedNodes[subCluster.name]} max={subCluster.numberOfNodes}/></div></td>
<td>({allocatedNodes[subCluster.name]} / {subCluster.numberOfNodes})</td>
</tr>
<tr>
<th scope="col">Flop Rate</th>
<td style="min-width: 75px;"><div class="col"><Progress value={flopRate[subCluster.name]} max={subCluster.flopRateSimd * subCluster.numberOfNodes}/></div></td>
<td>({flopRate[subCluster.name]} / {subCluster.flopRateSimd * subCluster.numberOfNodes})</td>
</tr>
<tr>
<th scope="col">MemBw Rate</th>
<td style="min-width: 75px;"><div class="col"><Progress value={memBwRate[subCluster.name]} max={subCluster.memoryBandwidth * subCluster.numberOfNodes}/></div></td>
<td>({memBwRate[subCluster.name]} / {subCluster.memoryBandwidth * subCluster.numberOfNodes})</td>
</tr>
</Table>
</Col>
<div class="col-9" bind:clientWidth={plotWidths[i]}>
{#key $mainQuery.data.nodeMetrics}
<Roofline
width={plotWidths[i] - 10} height={300} colorDots={false} cluster={subCluster}
data={transformPerNodeData($mainQuery.data.nodeMetrics.filter(data => data.subCluster == subCluster.name))} />
{/key}
</div>
</Row>
{/each}
<Row>
<div class="col-4" bind:clientWidth={colWidth1}>
<h4>Top Users</h4>
{#key $mainQuery.data}
<Histogram
width={colWidth1 - 25} height={300}
data={$mainQuery.data.topUsers.sort((a, b) => b.count - a.count).map(({ count }, idx) => ({ count, value: idx }))}
label={(x) => x < $mainQuery.data.topUsers.length ? $mainQuery.data.topUsers[Math.floor(x)].name : '0'} />
{/key}
</div>
<div class="col-2">
<Table>
<tr><th>Name</th><th>Number of Nodes</th></tr>
{#each $mainQuery.data.topUsers.sort((a, b) => b.count - a.count) as { name, count }}
<tr>
<th scope="col"><a href="/monitoring/user/{name}">{name}</a></th>
<td>{count}</td>
</tr>
{/each}
</Table>
</div>
<div class="col-4">
<h4>Top Projects</h4>
{#key $mainQuery.data}
<Histogram
width={colWidth1 - 25} height={300}
data={$mainQuery.data.topProjects.sort((a, b) => b.count - a.count).map(({ count }, idx) => ({ count, value: idx }))}
label={(x) => x < $mainQuery.data.topProjects.length ? $mainQuery.data.topProjects[Math.floor(x)].name : '0'} />
{/key}
</div>
<div class="col-2">
<Table>
<tr><th>Name</th><th>Number of Nodes</th></tr>
{#each $mainQuery.data.topProjects.sort((a, b) => b.count - a.count) as { name, count }}
<tr><th scope="col">{name}</th><td>{count}</td></tr>
{/each}
</Table>
</div>
</Row>
<Row>
<div class="col" bind:clientWidth={colWidth2}>
<h4>Duration Distribution</h4>
{#key $mainQuery.data.stats}
<Histogram
width={colWidth2 - 25} height={300}
data={$mainQuery.data.stats[0].histDuration} />
{/key}
</div>
<div class="col">
<h4>Number of Nodes Distribution</h4>
{#key $mainQuery.data.stats}
<Histogram
width={colWidth2 - 25} height={300}
data={$mainQuery.data.stats[0].histNumNodes} />
{/key}
</div>
</Row>
{/if}