cc-backend/internal/metricdata/utils.go

98 lines
3.4 KiB
Go
Raw Normal View History

2024-04-11 23:04:30 +02:00
// Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
// All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
2022-01-24 10:06:25 +01:00
package metricdata
import (
"context"
"encoding/json"
"time"
2022-01-24 10:06:25 +01:00
2022-06-21 17:52:36 +02:00
"github.com/ClusterCockpit/cc-backend/pkg/schema"
2022-01-24 10:06:25 +01:00
)
var TestLoadDataCallback func(job *schema.Job, metrics []string, scopes []schema.MetricScope, ctx context.Context, resolution int) (schema.JobData, error) = func(job *schema.Job, metrics []string, scopes []schema.MetricScope, ctx context.Context, resolution int) (schema.JobData, error) {
2022-01-24 10:06:25 +01:00
panic("TODO")
}
// Only a mock for unit-testing.
type TestMetricDataRepository struct{}
2022-01-24 10:06:25 +01:00
func (tmdr *TestMetricDataRepository) Init(_ json.RawMessage) error {
2022-01-24 10:06:25 +01:00
return nil
}
func (tmdr *TestMetricDataRepository) LoadData(
job *schema.Job,
metrics []string,
scopes []schema.MetricScope,
ctx context.Context,
resolution int) (schema.JobData, error) {
return TestLoadDataCallback(job, metrics, scopes, ctx, resolution)
2022-01-24 10:06:25 +01:00
}
func (tmdr *TestMetricDataRepository) LoadStats(
job *schema.Job,
metrics []string, ctx context.Context) (map[string]map[string]schema.MetricStatistics, error) {
2022-01-24 10:06:25 +01:00
panic("TODO")
}
func (tmdr *TestMetricDataRepository) LoadNodeData(
cluster string,
metrics, nodes []string,
scopes []schema.MetricScope,
from, to time.Time,
ctx context.Context) (map[string]map[string][]*schema.JobMetric, error) {
2022-01-24 10:06:25 +01:00
panic("TODO")
}
func DeepCopy(jd_temp schema.JobData) schema.JobData {
var jd schema.JobData
jd = make(schema.JobData, len(jd_temp))
for k, v := range jd_temp {
jd[k] = make(map[schema.MetricScope]*schema.JobMetric, len(jd_temp[k]))
for k_, v_ := range v {
jd[k][k_] = new(schema.JobMetric)
jd[k][k_].Series = make([]schema.Series, len(v_.Series))
for i := 0; i < len(v_.Series); i += 1 {
jd[k][k_].Series[i].Data = make([]schema.Float, len(v_.Series[i].Data))
copy(jd[k][k_].Series[i].Data, v_.Series[i].Data)
jd[k][k_].Series[i].Hostname = v_.Series[i].Hostname
jd[k][k_].Series[i].Id = v_.Series[i].Id
jd[k][k_].Series[i].Statistics.Avg = v_.Series[i].Statistics.Avg
jd[k][k_].Series[i].Statistics.Min = v_.Series[i].Statistics.Min
jd[k][k_].Series[i].Statistics.Max = v_.Series[i].Statistics.Max
}
jd[k][k_].Timestep = v_.Timestep
jd[k][k_].Unit.Base = v_.Unit.Base
jd[k][k_].Unit.Prefix = v_.Unit.Prefix
if v_.StatisticsSeries != nil {
// Init Slices
jd[k][k_].StatisticsSeries = new(schema.StatsSeries)
jd[k][k_].StatisticsSeries.Max = make([]schema.Float, len(v_.StatisticsSeries.Max))
jd[k][k_].StatisticsSeries.Min = make([]schema.Float, len(v_.StatisticsSeries.Min))
jd[k][k_].StatisticsSeries.Median = make([]schema.Float, len(v_.StatisticsSeries.Median))
jd[k][k_].StatisticsSeries.Mean = make([]schema.Float, len(v_.StatisticsSeries.Mean))
// Copy Data
copy(jd[k][k_].StatisticsSeries.Max, v_.StatisticsSeries.Max)
copy(jd[k][k_].StatisticsSeries.Min, v_.StatisticsSeries.Min)
copy(jd[k][k_].StatisticsSeries.Median, v_.StatisticsSeries.Median)
copy(jd[k][k_].StatisticsSeries.Mean, v_.StatisticsSeries.Mean)
// Handle Percentiles
for k__, v__ := range v_.StatisticsSeries.Percentiles {
jd[k][k_].StatisticsSeries.Percentiles[k__] = make([]schema.Float, len(v__))
copy(jd[k][k_].StatisticsSeries.Percentiles[k__], v__)
}
} else {
jd[k][k_].StatisticsSeries = v_.StatisticsSeries
}
}
}
return jd
}