1356 lines
50 KiB
C

/*
* Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
* All rights reserved. This file is part of nusif-solver.
* Use of this source code is governed by a MIT style
* license that can be found in the LICENSE file.
*/
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "allocate.h"
#include "discretization.h"
#include "parameter.h"
#include "util.h"
static double distance(
double i, double j, double k, double iCenter, double jCenter, double kCenter)
{
return sqrt(pow(iCenter - i, 2) + pow(jCenter - j, 2) + pow(kCenter - k, 2) * 1.0);
}
static double sumOffset(double* sizes, int init, int offset, int coord)
{
double sum = 0;
for (int i = init - offset; coord > 0; i -= offset, --coord) {
sum += sizes[i];
}
return sum;
}
static void printConfig(Discretization* d)
{
if (commIsMaster(&d->comm)) {
printf("Parameters for #%s#\n", d->problem);
printf("BC Left:%d Right:%d Bottom:%d Top:%d Front:%d Back:%d\n",
d->bcLeft,
d->bcRight,
d->bcBottom,
d->bcTop,
d->bcFront,
d->bcBack);
printf("\tReynolds number: %.2f\n", d->re);
printf("\tGx Gy: %.2f %.2f %.2f\n", d->gx, d->gy, d->gz);
printf("Geometry data:\n");
printf("\tDomain box size (x, y, z): %.2f, %.2f, %.2f\n",
d->grid.xlength,
d->grid.ylength,
d->grid.zlength);
printf("\tCells (x, y, z): %d, %d, %d\n",
d->grid.imax,
d->grid.jmax,
d->grid.kmax);
printf("\tCell size (dx, dy, dz): %f, %f, %f\n",
d->grid.dx,
d->grid.dy,
d->grid.dz);
printf("Timestep parameters:\n");
printf("\tDefault stepsize: %.2f, Final time %.2f\n", d->dt, d->te);
printf("\tdt bound: %.6f\n", d->dtBound);
printf("\tTau factor: %.2f\n", d->tau);
printf("Iterative parameters:\n");
printf("\tMax iterations: %d\n", d->itermax);
printf("\tepsilon (stopping tolerance) : %f\n", d->eps);
printf("\tgamma factor: %f\n", d->gamma);
printf("\tomega (SOR relaxation): %f\n", d->omega);
}
commPrintConfig(&d->comm);
}
void printGrid(Discretization* d, double* s)
{
int imaxLocal = d->comm.imaxLocal;
int jmaxLocal = d->comm.jmaxLocal;
int kmaxLocal = d->comm.kmaxLocal;
for (int k = 0; k < kmaxLocal + 2; k++) {
printf("K : %02d:\n", k);
for (int j = 0; j < jmaxLocal + 2; j++) {
printf("J : %02d: ", j);
for (int i = 0; i <imaxLocal + 2; i++) {
switch ((int)S(i, j, k)) {
case FRONTFACE:
printf("FF ");
break;
case BACKFACE:
printf("BF ");
break;
case LEFTFACE:
printf("LF ");
break;
case RIGHTFACE:
printf("RF ");
break;
case TOPFACE:
printf("TF ");
break;
case BOTTOMFACE:
printf("BMF ");
break;
case FRONTTOPLEFTCORNER:
printf("FTLC ");
break;
case FRONTTOPRIGHTCORNER:
printf("FTRC ");
break;
case FRONTBOTTOMLEFTCORNER:
printf("FBLC ");
break;
case FRONTBOTTOMRIGHTCORNER:
printf("FBRC ");
break;
case BACKTOPLEFTCORNER:
printf("BTLC ");
break;
case BACKTOPRIGHTCORNER:
printf("BTRC ");
break;
case BACKBOTTOMLEFTCORNER:
printf("BBLC ");
break;
case BACKBOTTOMRIGHTCORNER:
printf("BBRC ");
break;
case FRONTTOPLINE:
printf("FTL ");
break;
case FRONTBOTTOMLINE:
printf("FBL ");
break;
case FRONTLEFTLINE:
printf("FLL ");
break;
case FRONTRIGHTLINE:
printf("FRL ");
break;
case MIDTOPLEFTLINE:
printf("MTLL ");
break;
case MIDTOPRIGHTLINE:
printf("MTRL ");
break;
case MIDBOTTOMLEFTLINE:
printf("MBTL ");
break;
case MIDBOTTOMRIGHTLINE:
printf("MBRL ");
break;
case BACKTOPLINE:
printf("BTL ");
break;
case BACKBOTTOMLINE:
printf("BBL ");
break;
case BACKLEFTLINE:
printf("BLL ");
break;
case BACKRIGHTLINE:
printf("BRL ");
break;
case OBSTACLE:
printf("O ");
break;
case FLUID:
printf("N ");
break;
}
}
printf("\n");
}
printf("\n\n");
}
fflush(stdout);
}
void initDiscretization(Discretization* d, Parameter* params)
{
d->problem = params->name;
d->bcLeft = params->bcLeft;
d->bcRight = params->bcRight;
d->bcBottom = params->bcBottom;
d->bcTop = params->bcTop;
d->bcFront = params->bcFront;
d->bcBack = params->bcBack;
d->grid.imax = params->imax;
d->grid.jmax = params->jmax;
d->grid.kmax = params->kmax;
d->grid.xlength = params->xlength;
d->grid.ylength = params->ylength;
d->grid.zlength = params->zlength;
d->grid.dx = params->xlength / params->imax;
d->grid.dy = params->ylength / params->jmax;
d->grid.dz = params->zlength / params->kmax;
d->eps = params->eps;
d->omega = params->omg;
d->itermax = params->itermax;
d->re = params->re;
d->gx = params->gx;
d->gy = params->gy;
d->gz = params->gz;
d->dt = params->dt;
d->te = params->te;
d->tau = params->tau;
d->gamma = params->gamma;
/* allocate arrays */
int imaxLocal = d->comm.imaxLocal;
int jmaxLocal = d->comm.jmaxLocal;
int kmaxLocal = d->comm.kmaxLocal;
size_t size = (imaxLocal + 2) * (jmaxLocal + 2) * (kmaxLocal + 2);
d->u = allocate(64, size * sizeof(double));
d->v = allocate(64, size * sizeof(double));
d->w = allocate(64, size * sizeof(double));
d->p = allocate(64, size * sizeof(double));
d->rhs = allocate(64, size * sizeof(double));
d->f = allocate(64, size * sizeof(double));
d->g = allocate(64, size * sizeof(double));
d->h = allocate(64, size * sizeof(double));
d->s = allocate(64, size * sizeof(double));
for (int i = 0; i < size; i++) {
d->u[i] = params->u_init;
d->v[i] = params->v_init;
d->w[i] = params->w_init;
d->p[i] = params->p_init;
d->rhs[i] = 0.0;
d->f[i] = 0.0;
d->g[i] = 0.0;
d->h[i] = 0.0;
d->s[i] = FLUID;
}
double dx = d->grid.dx;
double dy = d->grid.dy;
double dz = d->grid.dz;
double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy) + 1.0 / (dz * dz);
d->dtBound = 0.5 * d->re * 1.0 / invSqrSum;
double xCenter = 0, yCenter = 0, zCenter = 0, radius = 0;
double x1 = 0, x2 = 0, y1 = 0, y2 = 0, z1 = 0, z2 = 0;
int iOffset = 0, jOffset = 0, kOffset = 0;
d->xLocal = d->comm.imaxLocal * d->grid.dx;
d->yLocal = d->comm.jmaxLocal * d->grid.dy;
d->zLocal = d->comm.kmaxLocal * d->grid.dz;
#ifdef _MPI
double xLocal[d->comm.size];
double yLocal[d->comm.size];
double zLocal[d->comm.size];
MPI_Allgather(&d->xLocal, 1, MPI_DOUBLE, xLocal, 1, MPI_DOUBLE, d->comm.comm);
MPI_Allgather(&d->yLocal, 1, MPI_DOUBLE, yLocal, 1, MPI_DOUBLE, d->comm.comm);
MPI_Allgather(&d->zLocal, 1, MPI_DOUBLE, zLocal, 1, MPI_DOUBLE, d->comm.comm);
d->xOffset = sumOffset(xLocal,
d->comm.rank,
(d->comm.dims[1] * d->comm.dims[2]),
d->comm.coords[0]);
d->yOffset = sumOffset(yLocal, d->comm.rank, d->comm.dims[2], d->comm.coords[1]);
d->zOffset = sumOffset(zLocal, d->comm.rank, 1, d->comm.coords[2]);
d->xOffsetEnd = d->xOffset + d->xLocal;
d->yOffsetEnd = d->yOffset + d->yLocal;
d->zOffsetEnd = d->zOffset + d->zLocal;
#else
d->xOffset = 0;
d->yOffset = 0;
d->zOffset = 0;
d->xOffsetEnd = d->xOffset + d->xLocal;
d->yOffsetEnd = d->yOffset + d->yLocal;
d->zOffsetEnd = d->zOffset + d->zLocal;
#endif
iOffset = d->xOffset / dx;
jOffset = d->yOffset / dy;
kOffset = d->zOffset / dz;
double* s = d->s;
switch (params->shape) {
case NOSHAPE:
break;
case RECT:
x1 = params->xCenter - params->xRectLength / 2;
x2 = params->xCenter + params->xRectLength / 2;
y1 = params->yCenter - params->yRectLength / 2;
y2 = params->yCenter + params->yRectLength / 2;
z1 = params->zCenter - params->zRectLength / 2;
z2 = params->zCenter + params->zRectLength / 2;
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
if ((x1 <= ((i + iOffset) * dx)) && (((i + iOffset) * dx) <= x2) &&
(y1 <= ((j + jOffset) * dy)) && (((j + jOffset) * dy) <= y2) &&
((z1 <= ((k + kOffset) * dz)) && (((k + kOffset) * dz) <= z2))) {
S(i, j, k) = OBSTACLE;
}
}
}
}
break;
case CIRCLE:
xCenter = params->xCenter;
yCenter = params->yCenter;
zCenter = params->zCenter;
radius = params->circleRadius;
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
if (distance(((i + iOffset) * dx),
((j + jOffset) * dy),
((k + kOffset) * dz),
xCenter,
yCenter,
zCenter) <= radius) {
S(i, j, k) = OBSTACLE;
}
}
}
}
break;
default:
break;
}
#ifdef _MPI
commExchange(&d->comm, s);
#endif
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
/* Assigning enum values to Corners */
if (S(i - 1, j + 1, k - 1) == FLUID && S(i - 1, j, k) == FLUID &&
S(i, j + 1, k) == FLUID && S(i, j, k - 1) == FLUID &&
S(i + 1, j - 1, k + 1) == OBSTACLE && S(i, j, k) == OBSTACLE) {
S(i, j, k) = FRONTTOPLEFTCORNER; //
}
if (S(i + 1, j + 1, k - 1) == FLUID && S(i + 1, j, k) == FLUID &&
S(i, j + 1, k) == FLUID && S(i, j, k - 1) == FLUID &&
S(i - 1, j - 1, k + 1) == OBSTACLE && S(i, j, k) == OBSTACLE) {
S(i, j, k) = FRONTTOPRIGHTCORNER; //
}
if (S(i - 1, j - 1, k - 1) == FLUID && S(i - 1, j, k) == FLUID &&
S(i, j - 1, k) == FLUID && S(i, j, k - 1) == FLUID &&
S(i + 1, j + 1, k + 1) == OBSTACLE && S(i, j, k) == OBSTACLE) {
S(i, j, k) = FRONTBOTTOMLEFTCORNER; //
}
if (S(i + 1, j - 1, k - 1) == FLUID && S(i + 1, j, k) == FLUID &&
S(i, j - 1, k) == FLUID && S(i, j, k - 1) == FLUID &&
S(i - 1, j + 1, k + 1) == OBSTACLE && S(i, j, k) == OBSTACLE) {
S(i, j, k) = FRONTBOTTOMRIGHTCORNER; //
}
if (S(i - 1, j + 1, k + 1) == FLUID && S(i - 1, j, k) == FLUID &&
S(i, j + 1, k) == FLUID && S(i, j, k + 1) == FLUID &&
S(i + 1, j - 1, k - 1) == OBSTACLE && S(i, j, k) == OBSTACLE) {
S(i, j, k) = BACKTOPLEFTCORNER; //
}
if (S(i + 1, j + 1, k + 1) == FLUID && S(i + 1, j, k) == FLUID &&
S(i, j + 1, k) == FLUID && S(i, j, k + 1) == FLUID &&
S(i - 1, j - 1, k - 1) == OBSTACLE && S(i, j, k) == OBSTACLE) {
S(i, j, k) = BACKTOPRIGHTCORNER;
}
if (S(i - 1, j - 1, k + 1) == FLUID && S(i - 1, j, k) == FLUID &&
S(i, j - 1, k) == FLUID && S(i, j, k + 1) == FLUID &&
S(i + 1, j + 1, k - 1) == OBSTACLE && S(i, j, k) == OBSTACLE) {
S(i, j, k) = BACKBOTTOMLEFTCORNER;
}
if (S(i + 1, j - 1, k + 1) == FLUID && S(i + 1, j, k) == FLUID &&
S(i, j - 1, k) == FLUID && S(i, j, k + 1) == FLUID &&
S(i - 1, j + 1, k - 1) == OBSTACLE && S(i, j, k) == OBSTACLE) {
S(i, j, k) = BACKBOTTOMRIGHTCORNER;
}
/* Assigning enum values to Lines */
if (S(i - 1, j, k - 1) == FLUID && S(i, j, k - 1) == FLUID &&
S(i - 1, j, k) == FLUID && S(i + 1, j, k + 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = FRONTLEFTLINE;
}
if (S(i + 1, j, k - 1) == FLUID && S(i + 1, j, k) == FLUID &&
S(i, j, k - 1) == FLUID && S(i - 1, j, k + 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = FRONTRIGHTLINE;
}
if (S(i, j + 1, k - 1) == FLUID && S(i, j + 1, k) == FLUID &&
S(i, j, k - 1) == FLUID && S(i, j - 1, k + 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = FRONTTOPLINE;
}
if (S(i, j - 1, k - 1) == FLUID && S(i, j, k - 1) == FLUID &&
S(i, j - 1, k) == FLUID && S(i, j + 1, k + 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = FRONTBOTTOMLINE;
}
if (S(i - 1, j + 1, k) == FLUID && S(i, j + 1, k) == FLUID &&
S(i - 1, j, k) == FLUID && S(i + 1, j - 1, k) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = MIDTOPLEFTLINE;
}
if (S(i + 1, j + 1, k) == FLUID && S(i + 1, j, k) == FLUID &&
S(i, j + 1, k) == FLUID && S(i - 1, j - 1, k) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = MIDTOPRIGHTLINE;
}
if (S(i - 1, j - 1, k) == FLUID && S(i - 1, j, k) == FLUID &&
S(i, j - 1, k) == FLUID && S(i + 1, j + 1, k) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = MIDBOTTOMLEFTLINE;
}
if (S(i + 1, j - 1, k) == FLUID && S(i + 1, j, k) == FLUID &&
S(i, j - 1, k) == FLUID && S(i - 1, j + 1, k) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = MIDBOTTOMRIGHTLINE;
}
if (S(i - 1, j, k + 1) == FLUID && S(i - 1, j, k) == FLUID &&
S(i, j, k + 1) == FLUID && S(i + 1, j, k - 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = BACKLEFTLINE;
}
if (S(i + 1, j, k + 1) == FLUID && S(i + 1, j, k) == FLUID &&
S(i, j, k + 1) == FLUID && S(i - 1, j, k - 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = BACKRIGHTLINE;
}
if (S(i, j + 1, k + 1) == FLUID && S(i, j + 1, k) == FLUID &&
S(i, j, k + 1) == FLUID && S(i, j - 1, k - 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = BACKTOPLINE;
}
if (S(i, j - 1, k + 1) == FLUID && S(i, j - 1, k) == FLUID &&
S(i, j, k + 1) == FLUID && S(i, j + 1, k - 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = BACKBOTTOMLINE;
}
/* Assigning enum values to Faces */
if (S(i, j, k - 1) == FLUID && S(i, j, k + 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = FRONTFACE; //
}
if (S(i, j, k + 1) == FLUID && S(i, j, k - 1) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = BACKFACE; //
}
if (S(i, j - 1, k) == FLUID && S(i, j + 1, k) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = BOTTOMFACE; //
}
if (S(i, j + 1, k) == FLUID && S(i, j - 1, k) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = TOPFACE; //
}
if (S(i - 1, j, k) == FLUID && S(i + 1, j, k) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = LEFTFACE; //
}
if (S(i + 1, j, k) == FLUID && S(i - 1, j, k) == OBSTACLE &&
S(i, j, k) == OBSTACLE) {
S(i, j, k) = RIGHTFACE; //
}
}
}
}
#ifdef VERBOSE
printConfig(d);
#endif /* VERBOSE */
}
void setBoundaryConditions(Discretization* d)
{
int imaxLocal = d->comm.imaxLocal;
int jmaxLocal = d->comm.jmaxLocal;
int kmaxLocal = d->comm.kmaxLocal;
double* u = d->u;
double* v = d->v;
double* w = d->w;
if (commIsBoundary(&d->comm, TOP)) {
switch (d->bcTop) {
case NOSLIP:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, jmaxLocal + 1, k) = -U(i, jmaxLocal, k);
V(i, jmaxLocal, k) = 0.0;
W(i, jmaxLocal + 1, k) = -W(i, jmaxLocal, k);
}
}
break;
case SLIP:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, jmaxLocal + 1, k) = U(i, jmaxLocal, k);
V(i, jmaxLocal, k) = 0.0;
W(i, jmaxLocal + 1, k) = W(i, jmaxLocal, k);
}
}
break;
case OUTFLOW:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, jmaxLocal + 1, k) = U(i, jmaxLocal, k);
V(i, jmaxLocal, k) = V(i, jmaxLocal - 1, k);
W(i, jmaxLocal + 1, k) = W(i, jmaxLocal, k);
}
}
break;
case PERIODIC:
break;
}
}
if (commIsBoundary(&d->comm, BOTTOM)) {
switch (d->bcBottom) {
case NOSLIP:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, 0, k) = -U(i, 1, k);
V(i, 0, k) = 0.0;
W(i, 0, k) = -W(i, 1, k);
}
}
break;
case SLIP:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, 0, k) = U(i, 1, k);
V(i, 0, k) = 0.0;
W(i, 0, k) = W(i, 1, k);
}
}
break;
case OUTFLOW:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, 0, k) = U(i, 1, k);
V(i, 0, k) = V(i, 1, k);
W(i, 0, k) = W(i, 1, k);
}
}
break;
case PERIODIC:
break;
}
}
if (commIsBoundary(&d->comm, LEFT)) {
switch (d->bcLeft) {
case NOSLIP:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
U(0, j, k) = 0.0;
V(0, j, k) = -V(1, j, k);
W(0, j, k) = -W(1, j, k);
}
}
break;
case SLIP:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
U(0, j, k) = 0.0;
V(0, j, k) = V(1, j, k);
W(0, j, k) = W(1, j, k);
}
}
break;
case OUTFLOW:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
U(0, j, k) = U(1, j, k);
V(0, j, k) = V(1, j, k);
W(0, j, k) = W(1, j, k);
}
}
break;
case PERIODIC:
break;
}
}
if (commIsBoundary(&d->comm, RIGHT)) {
switch (d->bcRight) {
case NOSLIP:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
U(imaxLocal, j, k) = 0.0;
V(imaxLocal + 1, j, k) = -V(imaxLocal, j, k);
W(imaxLocal + 1, j, k) = -W(imaxLocal, j, k);
}
}
break;
case SLIP:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
U(imaxLocal, j, k) = 0.0;
V(imaxLocal + 1, j, k) = V(imaxLocal, j, k);
W(imaxLocal + 1, j, k) = W(imaxLocal, j, k);
}
}
break;
case OUTFLOW:
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
U(imaxLocal, j, k) = U(imaxLocal - 1, j, k);
V(imaxLocal + 1, j, k) = V(imaxLocal, j, k);
W(imaxLocal + 1, j, k) = W(imaxLocal, j, k);
}
}
break;
case PERIODIC:
break;
}
}
if (commIsBoundary(&d->comm, FRONT)) {
switch (d->bcFront) {
case NOSLIP:
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, j, 0) = -U(i, j, 1);
V(i, j, 0) = -V(i, j, 1);
W(i, j, 0) = 0.0;
}
}
break;
case SLIP:
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, j, 0) = U(i, j, 1);
V(i, j, 0) = V(i, j, 1);
W(i, j, 0) = 0.0;
}
}
break;
case OUTFLOW:
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, j, 0) = U(i, j, 1);
V(i, j, 0) = V(i, j, 1);
W(i, j, 0) = W(i, j, 1);
}
}
break;
case PERIODIC:
break;
}
}
if (commIsBoundary(&d->comm, BACK)) {
switch (d->bcBack) {
case NOSLIP:
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, j, kmaxLocal + 1) = -U(i, j, kmaxLocal);
V(i, j, kmaxLocal + 1) = -V(i, j, kmaxLocal);
W(i, j, kmaxLocal) = 0.0;
}
}
break;
case SLIP:
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, j, kmaxLocal + 1) = U(i, j, kmaxLocal);
V(i, j, kmaxLocal + 1) = V(i, j, kmaxLocal);
W(i, j, kmaxLocal) = 0.0;
}
}
break;
case OUTFLOW:
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, j, kmaxLocal + 1) = U(i, j, kmaxLocal);
V(i, j, kmaxLocal + 1) = V(i, j, kmaxLocal);
W(i, j, kmaxLocal) = W(i, j, kmaxLocal - 1);
}
}
break;
case PERIODIC:
break;
}
}
}
void computeRHS(Discretization* d)
{
int imaxLocal = d->comm.imaxLocal;
int jmaxLocal = d->comm.jmaxLocal;
int kmaxLocal = d->comm.kmaxLocal;
double idx = 1.0 / d->grid.dx;
double idy = 1.0 / d->grid.dy;
double idz = 1.0 / d->grid.dz;
double idt = 1.0 / d->dt;
double* rhs = d->rhs;
double* f = d->f;
double* g = d->g;
double* h = d->h;
commShift(&d->comm, f, g, h);
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
RHS(i, j, k) = ((F(i, j, k) - F(i - 1, j, k)) * idx +
(G(i, j, k) - G(i, j - 1, k)) * idy +
(H(i, j, k) - H(i, j, k - 1)) * idz) *
idt;
}
}
}
}
void setSpecialBoundaryCondition(Discretization* d)
{
int imaxLocal = d->comm.imaxLocal;
int jmaxLocal = d->comm.jmaxLocal;
int kmaxLocal = d->comm.kmaxLocal;
double* u = d->u;
if (strcmp(d->problem, "dcavity") == 0) {
if (commIsBoundary(&d->comm, TOP)) {
for (int k = 1; k < kmaxLocal; k++) {
for (int i = 1; i < imaxLocal; i++) {
U(i, jmaxLocal + 1, k) = 2.0 - U(i, jmaxLocal, k);
}
}
}
} else if (strcmp(d->problem, "canal") == 0) {
if (commIsBoundary(&d->comm, LEFT)) {
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
U(0, j, k) = 2.0;
}
}
}
} else if (strcmp(d->problem, "backstep") == 0) {
if (commIsBoundary(&d->comm, LEFT)) {
double* s = d->s;
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
if (S(1, j, k) == FLUID) U(0, j, k) = 1.0;
else {
U(0, j, k) = 0.0;
U(1, j, k) = 0.0;
}
}
}
}
} else if (strcmp(d->problem, "karman") == 0) {
if (commIsBoundary(&d->comm, LEFT)) {
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
U(1, j, k) = 1.0;
}
}
}
}
}
static double maxElement(Discretization* d, double* m)
{
int size = (d->comm.imaxLocal + 2) * (d->comm.jmaxLocal + 2) *
(d->comm.kmaxLocal + 2);
double maxval = DBL_MIN;
for (int i = 0; i < size; i++) {
maxval = MAX(maxval, fabs(m[i]));
}
commReduction(&maxval, MAX);
return maxval;
}
void normalizePressure(Discretization* d)
{
int imaxLocal = d->comm.imaxLocal;
int jmaxLocal = d->comm.jmaxLocal;
int kmaxLocal = d->comm.kmaxLocal;
double* p = d->p;
double avgP = 0.0;
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
avgP += P(i, j, k);
}
}
}
commReduction(&avgP, SUM);
avgP /= (d->grid.imax * d->grid.jmax * d->grid.kmax);
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
P(i, j, k) = P(i, j, k) - avgP;
}
}
}
}
void computeTimestep(Discretization* d)
{
double dt = d->dtBound;
double dx = d->grid.dx;
double dy = d->grid.dy;
double dz = d->grid.dz;
double umax = maxElement(d, d->u);
double vmax = maxElement(d, d->v);
double wmax = maxElement(d, d->w);
if (umax > 0) {
dt = (dt > dx / umax) ? dx / umax : dt;
}
if (vmax > 0) {
dt = (dt > dy / vmax) ? dy / vmax : dt;
}
if (wmax > 0) {
dt = (dt > dz / wmax) ? dz / wmax : dt;
}
d->dt = dt * d->tau;
}
void setObjectBoundaryCondition(Discretization* d)
{
int imaxLocal = d->comm.imaxLocal;
int jmaxLocal = d->comm.jmaxLocal;
int kmaxLocal = d->comm.kmaxLocal;
double* u = d->u;
double* v = d->v;
double* w = d->w;
double* s = d->s;
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
switch ((int)S(i, j, k)) {
case TOPFACE:
U(i, j, k) = -U(i, j + 1, k);
V(i, j, k) = 0.0;
W(i, j, k) = -W(i, j + 1, k);
;
break;
case BOTTOMFACE:
U(i, j, k) = -U(i, j - 1, k);
V(i, j, k) = 0.0;
W(i, j, k) = -W(i, j - 1, k);
break;
case LEFTFACE:
U(i, j, k) = 0.0;
V(i, j, k) = -V(i - 1, j, k);
W(i, j, k) = -W(i - 1, j, k);
break;
case RIGHTFACE:
U(i, j, k) = 0.0;
V(i, j, k) = -V(i + 1, j, k);
W(i, j, k) = -W(i + 1, j, k);
break;
case FRONTFACE:
U(i, j, k) = -U(i, j, k - 1);
V(i, j, k) = -V(i, j, k - 1);
W(i, j, k) = 0.0;
break;
case BACKFACE:
U(i, j, k) = -U(i, j, k + 1);
V(i, j, k) = -V(i, j, k + 1);
W(i, j, k) = 0.0;
break;
case FRONTLEFTLINE:
U(i, j, k) = 0.0;
V(i, j, k) = -V(i, j, k - 1);
W(i, j, k) = -W(i - 1, j, k);
break;
case FRONTRIGHTLINE:
U(i, j, k) = 0.0;
V(i, j, k) = -V(i, j, k - 1);
W(i, j, k) = -W(i + 1, j, k);
break;
case FRONTTOPLINE:
U(i, j, k) = -U(i, j, k - 1);
V(i, j, k) = 0.0;
W(i, j, k) = -W(i, j + 1, k);
break;
case FRONTBOTTOMLINE:
U(i, j, k) = -U(i, j, k - 1);
V(i, j, k) = 0.0;
W(i, j, k) = -W(i, j - 1, k);
break;
case MIDTOPLEFTLINE:
U(i, j, k) = -U(i, j + 1, k);
V(i, j, k) = -V(i - 1, j, k);
W(i, j, k) = 0.0;
break;
case MIDTOPRIGHTLINE:
U(i, j, k) = 0.0;
V(i, j, k) = 0.0;
U(i - 1, j, k) = -U(i - 1, j + 1, k);
V(i, j - 1, k) = -V(i + 1, j - 1, k);
W(i, j, k) = 0.0;
break;
case MIDBOTTOMLEFTLINE:
U(i, j, k) = -U(i, j - 1, k);
V(i, j, k) = -V(i - 1, j, k);
W(i, j, k) = 0.0;
break;
case MIDBOTTOMRIGHTLINE:
U(i, j, k) = -U(i, j - 1, k);
V(i, j, k) = -V(i + 1, j, k);
W(i, j, k) = 0.0;
break;
case BACKLEFTLINE:
U(i, j, k) = 0.0;
V(i, j, k) = -V(i, j, k + 1);
W(i, j, k) = -W(i - 1, j, k);
break;
case BACKRIGHTLINE:
U(i, j, k) = 0.0;
V(i, j, k) = -V(i, j, k + 1);
W(i, j, k) = -W(i + 1, j, k);
break;
case BACKTOPLINE:
U(i, j, k) = -U(i, j, k + 1);
V(i, j, k) = 0.0;
W(i, j, k) = -W(i, j + 1, k);
break;
case BACKBOTTOMLINE:
U(i, j, k) = -U(i, j, k + 1);
V(i, j, k) = 0.0;
W(i, j, k) = -W(i, j - 1, k);
break;
case FRONTTOPLEFTCORNER:
U(i, j, k) = -U(i, j, k - 1);
V(i, j, k) = -V(i - 1, j, k);
W(i, j, k) = -W(i, j + 1, k);
break;
case FRONTTOPRIGHTCORNER:
U(i, j, k) = -U(i, j, k - 1);
V(i, j, k) = -V(i + 1, j, k);
W(i, j, k) = -W(i, j + 1, k);
break;
case FRONTBOTTOMLEFTCORNER:
U(i, j, k) = -U(i, j, k - 1);
V(i, j, k) = -V(i - 1, j, k);
W(i, j, k) = -W(i, j - 1, k);
break;
case FRONTBOTTOMRIGHTCORNER:
U(i, j, k) = -U(i, j, k - 1);
V(i, j, k) = -V(i + 1, j, k);
W(i, j, k) = -W(i, j - 1, k);
break;
case BACKTOPLEFTCORNER:
U(i, j, k) = -U(i, j, k + 1);
V(i, j, k) = -V(i - 1, j, k);
W(i, j, k) = -W(i, j + 1, k);
break;
case BACKTOPRIGHTCORNER:
U(i, j, k) = -U(i, j, k + 1);
V(i, j, k) = -V(i + 1, j, k);
W(i, j, k) = -W(i, j + 1, k);
break;
case BACKBOTTOMLEFTCORNER:
U(i, j, k) = -U(i, j, k + 1);
V(i, j, k) = -V(i - 1, j, k);
W(i, j, k) = -W(i, j - 1, k);
break;
case BACKBOTTOMRIGHTCORNER:
U(i, j, k) = -U(i, j, k + 1);
V(i, j, k) = -V(i + 1, j, k);
W(i, j, k) = -W(i, j - 1, k);
break;
}
}
}
}
}
void computeFG(Discretization* d)
{
int imaxLocal = d->comm.imaxLocal;
int jmaxLocal = d->comm.jmaxLocal;
int kmaxLocal = d->comm.kmaxLocal;
double* u = d->u;
double* v = d->v;
double* w = d->w;
double* f = d->f;
double* g = d->g;
double* h = d->h;
double* s = d->s;
double gx = d->gx;
double gy = d->gy;
double gz = d->gz;
double dt = d->dt;
double gamma = d->gamma;
double inverseRe = 1.0 / d->re;
double inverseDx = 1.0 / d->grid.dx;
double inverseDy = 1.0 / d->grid.dy;
double inverseDz = 1.0 / d->grid.dz;
double du2dx, dv2dy, dw2dz;
double duvdx, duwdx, duvdy, dvwdy, duwdz, dvwdz;
double du2dx2, du2dy2, du2dz2;
double dv2dx2, dv2dy2, dv2dz2;
double dw2dx2, dw2dy2, dw2dz2;
commExchange(&d->comm, u);
commExchange(&d->comm, v);
commExchange(&d->comm, w);
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
if (S(i, j, k) == FLUID) {
du2dx = inverseDx * 0.25 *
((U(i, j, k) + U(i + 1, j, k)) *
(U(i, j, k) + U(i + 1, j, k)) -
(U(i, j, k) + U(i - 1, j, k)) *
(U(i, j, k) + U(i - 1, j, k))) +
gamma * inverseDx * 0.25 *
(fabs(U(i, j, k) + U(i + 1, j, k)) *
(U(i, j, k) - U(i + 1, j, k)) +
fabs(U(i, j, k) + U(i - 1, j, k)) *
(U(i, j, k) - U(i - 1, j, k)));
duvdy = inverseDy * 0.25 *
((V(i, j, k) + V(i + 1, j, k)) *
(U(i, j, k) + U(i, j + 1, k)) -
(V(i, j - 1, k) + V(i + 1, j - 1, k)) *
(U(i, j, k) + U(i, j - 1, k))) +
gamma * inverseDy * 0.25 *
(fabs(V(i, j, k) + V(i + 1, j, k)) *
(U(i, j, k) - U(i, j + 1, k)) +
fabs(V(i, j - 1, k) + V(i + 1, j - 1, k)) *
(U(i, j, k) - U(i, j - 1, k)));
duwdz = inverseDz * 0.25 *
((W(i, j, k) + W(i + 1, j, k)) *
(U(i, j, k) + U(i, j, k + 1)) -
(W(i, j, k - 1) + W(i + 1, j, k - 1)) *
(U(i, j, k) + U(i, j, k - 1))) +
gamma * inverseDz * 0.25 *
(fabs(W(i, j, k) + W(i + 1, j, k)) *
(U(i, j, k) - U(i, j, k + 1)) +
fabs(W(i, j, k - 1) + W(i + 1, j, k - 1)) *
(U(i, j, k) - U(i, j, k - 1)));
du2dx2 = inverseDx * inverseDx *
(U(i + 1, j, k) - 2.0 * U(i, j, k) + U(i - 1, j, k));
du2dy2 = inverseDy * inverseDy *
(U(i, j + 1, k) - 2.0 * U(i, j, k) + U(i, j - 1, k));
du2dz2 = inverseDz * inverseDz *
(U(i, j, k + 1) - 2.0 * U(i, j, k) + U(i, j, k - 1));
F(i, j, k) = U(i, j, k) +
dt * (inverseRe * (du2dx2 + du2dy2 + du2dz2) - du2dx -
duvdy - duwdz + gx);
duvdx = inverseDx * 0.25 *
((U(i, j, k) + U(i, j + 1, k)) *
(V(i, j, k) + V(i + 1, j, k)) -
(U(i - 1, j, k) + U(i - 1, j + 1, k)) *
(V(i, j, k) + V(i - 1, j, k))) +
gamma * inverseDx * 0.25 *
(fabs(U(i, j, k) + U(i, j + 1, k)) *
(V(i, j, k) - V(i + 1, j, k)) +
fabs(U(i - 1, j, k) + U(i - 1, j + 1, k)) *
(V(i, j, k) - V(i - 1, j, k)));
dv2dy = inverseDy * 0.25 *
((V(i, j, k) + V(i, j + 1, k)) *
(V(i, j, k) + V(i, j + 1, k)) -
(V(i, j, k) + V(i, j - 1, k)) *
(V(i, j, k) + V(i, j - 1, k))) +
gamma * inverseDy * 0.25 *
(fabs(V(i, j, k) + V(i, j + 1, k)) *
(V(i, j, k) - V(i, j + 1, k)) +
fabs(V(i, j, k) + V(i, j - 1, k)) *
(V(i, j, k) - V(i, j - 1, k)));
dvwdz = inverseDz * 0.25 *
((W(i, j, k) + W(i, j + 1, k)) *
(V(i, j, k) + V(i, j, k + 1)) -
(W(i, j, k - 1) + W(i, j + 1, k - 1)) *
(V(i, j, k) + V(i, j, k + 1))) +
gamma * inverseDz * 0.25 *
(fabs(W(i, j, k) + W(i, j + 1, k)) *
(V(i, j, k) - V(i, j, k + 1)) +
fabs(W(i, j, k - 1) + W(i, j + 1, k - 1)) *
(V(i, j, k) - V(i, j, k + 1)));
dv2dx2 = inverseDx * inverseDx *
(V(i + 1, j, k) - 2.0 * V(i, j, k) + V(i - 1, j, k));
dv2dy2 = inverseDy * inverseDy *
(V(i, j + 1, k) - 2.0 * V(i, j, k) + V(i, j - 1, k));
dv2dz2 = inverseDz * inverseDz *
(V(i, j, k + 1) - 2.0 * V(i, j, k) + V(i, j, k - 1));
G(i, j, k) = V(i, j, k) +
dt * (inverseRe * (dv2dx2 + dv2dy2 + dv2dz2) - duvdx -
dv2dy - dvwdz + gy);
duwdx = inverseDx * 0.25 *
((U(i, j, k) + U(i, j, k + 1)) *
(W(i, j, k) + W(i + 1, j, k)) -
(U(i - 1, j, k) + U(i - 1, j, k + 1)) *
(W(i, j, k) + W(i - 1, j, k))) +
gamma * inverseDx * 0.25 *
(fabs(U(i, j, k) + U(i, j, k + 1)) *
(W(i, j, k) - W(i + 1, j, k)) +
fabs(U(i - 1, j, k) + U(i - 1, j, k + 1)) *
(W(i, j, k) - W(i - 1, j, k)));
dvwdy = inverseDy * 0.25 *
((V(i, j, k) + V(i, j, k + 1)) *
(W(i, j, k) + W(i, j + 1, k)) -
(V(i, j - 1, k + 1) + V(i, j - 1, k)) *
(W(i, j, k) + W(i, j - 1, k))) +
gamma * inverseDy * 0.25 *
(fabs(V(i, j, k) + V(i, j, k + 1)) *
(W(i, j, k) - W(i, j + 1, k)) +
fabs(V(i, j - 1, k + 1) + V(i, j - 1, k)) *
(W(i, j, k) - W(i, j - 1, k)));
dw2dz = inverseDz * 0.25 *
((W(i, j, k) + W(i, j, k + 1)) *
(W(i, j, k) + W(i, j, k + 1)) -
(W(i, j, k) + W(i, j, k - 1)) *
(W(i, j, k) + W(i, j, k - 1))) +
gamma * inverseDz * 0.25 *
(fabs(W(i, j, k) + W(i, j, k + 1)) *
(W(i, j, k) - W(i, j, k + 1)) +
fabs(W(i, j, k) + W(i, j, k - 1)) *
(W(i, j, k) - W(i, j, k - 1)));
dw2dx2 = inverseDx * inverseDx *
(W(i + 1, j, k) - 2.0 * W(i, j, k) + W(i - 1, j, k));
dw2dy2 = inverseDy * inverseDy *
(W(i, j + 1, k) - 2.0 * W(i, j, k) + W(i, j - 1, k));
dw2dz2 = inverseDz * inverseDz *
(W(i, j, k + 1) - 2.0 * W(i, j, k) + W(i, j, k - 1));
H(i, j, k) = W(i, j, k) +
dt * (inverseRe * (dw2dx2 + dw2dy2 + dw2dz2) - duwdx -
dvwdy - dw2dz + gz);
} else {
switch ((int)S(i, j, k)) {
case TOPFACE:
G(i, j, k) = V(i, j, k);
break;
case BOTTOMFACE:
G(i, j, k) = V(i, j, k);
break;
case LEFTFACE:
F(i, j, k) = U(i, j, k);
break;
case RIGHTFACE:
F(i, j, k) = U(i, j, k);
break;
case FRONTFACE:
H(i, j, k) = W(i, j, k);
break;
case BACKFACE:
H(i, j, k) = W(i, j, k);
break;
case FRONTLEFTLINE:
F(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case FRONTRIGHTLINE:
F(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case FRONTTOPLINE:
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case FRONTBOTTOMLINE:
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case MIDTOPLEFTLINE:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
break;
case MIDTOPRIGHTLINE:
F(i, j, k) = U(i, j, k);
G(i, j, k) = V(i, j, k);
break;
case MIDBOTTOMLEFTLINE:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
break;
case MIDBOTTOMRIGHTLINE:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
break;
case BACKLEFTLINE:
F(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case BACKRIGHTLINE:
F(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case BACKTOPLINE:
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case BACKBOTTOMLINE:
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case FRONTTOPLEFTCORNER:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case FRONTTOPRIGHTCORNER:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case FRONTBOTTOMLEFTCORNER:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case FRONTBOTTOMRIGHTCORNER:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case BACKTOPLEFTCORNER:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case BACKTOPRIGHTCORNER:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case BACKBOTTOMLEFTCORNER:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
case BACKBOTTOMRIGHTCORNER:
F(i, j, k) = 0.0;
G(i, j, k) = 0.0;
H(i, j, k) = 0.0;
break;
}
}
}
}
}
/* ----------------------------- boundary of F ---------------------------
*/
if (commIsBoundary(&d->comm, LEFT)) {
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
F(0, j, k) = U(0, j, k);
}
}
}
if (commIsBoundary(&d->comm, RIGHT)) {
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
F(imaxLocal, j, k) = U(imaxLocal, j, k);
}
}
}
/* ----------------------------- boundary of G ---------------------------
*/
if (commIsBoundary(&d->comm, BOTTOM)) {
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int i = 1; i < imaxLocal + 1; i++) {
G(i, 0, k) = V(i, 0, k);
}
}
}
if (commIsBoundary(&d->comm, TOP)) {
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int i = 1; i < imaxLocal + 1; i++) {
G(i, jmaxLocal, k) = V(i, jmaxLocal, k);
}
}
}
/* ----------------------------- boundary of H ---------------------------
*/
if (commIsBoundary(&d->comm, FRONT)) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
H(i, j, 0) = W(i, j, 0);
}
}
}
if (commIsBoundary(&d->comm, BACK)) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
H(i, j, kmaxLocal) = W(i, j, kmaxLocal);
}
}
}
}
void adaptUV(Discretization* d)
{
int imaxLocal = d->comm.imaxLocal;
int jmaxLocal = d->comm.jmaxLocal;
int kmaxLocal = d->comm.kmaxLocal;
double* p = d->p;
double* u = d->u;
double* v = d->v;
double* w = d->w;
double* f = d->f;
double* g = d->g;
double* h = d->h;
double factorX = d->dt / d->grid.dx;
double factorY = d->dt / d->grid.dy;
double factorZ = d->dt / d->grid.dz;
for (int k = 1; k < kmaxLocal + 1; k++) {
for (int j = 1; j < jmaxLocal + 1; j++) {
for (int i = 1; i < imaxLocal + 1; i++) {
U(i, j, k) = F(i, j, k) - (P(i + 1, j, k) - P(i, j, k)) * factorX;
V(i, j, k) = G(i, j, k) - (P(i, j + 1, k) - P(i, j, k)) * factorY;
W(i, j, k) = H(i, j, k) - (P(i, j, k + 1) - P(i, j, k)) * factorZ;
}
}
}
}