/* * Copyright (C) 2022 NHR@FAU, University Erlangen-Nuremberg. * All rights reserved. This file is part of nusif-solver. * Use of this source code is governed by a MIT style * license that can be found in the LICENSE file. */ #include #include #include #include #include #include "particletracing.h" #define U(i, j) u[(j) * (imaxLocal + 2) + (i)] #define V(i, j) v[(j) * (imaxLocal + 2) + (i)] #define S(i, j) s[(j) * (imaxLocal + 2) + (i)] static int ts = 0; #define IDIM 0 #define JDIM 1 #define XOFFSET 0 #define YOFFSET 1 #define XOFFSETEND 2 #define YOFFSETEND 3 static double sum(int* sizes, int size) { double sum = 0; for (int i = 0; i < size; ++i) { sum += sizes[i]; } return sum; } void printUV(ParticleTracer* particletracer, double* u, double* v) { int imaxLocal = particletracer->imaxLocal; for (int i = 0; i < particletracer->size; i++) { if (i == particletracer->rank) { printf( "\n### RANK %d #######################################################\n", particletracer->rank); printf("\nGrid U : \n"); for (int j = 0; j < particletracer->jmaxLocal + 2; j++) { printf("%02d: ", j); for (int i = 0; i < particletracer->imaxLocal + 2; i++) { printf("%4.2f ", u[j * (imaxLocal + 2) + i]); } printf("\n"); } fflush(stdout); printf("\nGrid V : \n"); for (int j = 0; j < particletracer->jmaxLocal + 2; j++) { printf("%02d: ", j); for (int i = 0; i < particletracer->imaxLocal + 2; i++) { printf("%4.2f ", v[j * (imaxLocal + 2) + i]); } printf("\n"); } fflush(stdout); } #ifdef _MPI MPI_Barrier(MPI_COMM_WORLD); #endif } } void initParticleTracer( ParticleTracer* particletracer, Discretization* d, Parameter* params) { int dims[NDIMS] = { 0, 0 }; int periods[NDIMS] = { 0, 0 }; /* initializing local properties from params */ particletracer->rank = d->comm.rank; particletracer->size = d->comm.size; particletracer->numberOfParticles = params->numberOfParticles; particletracer->startTime = params->startTime; particletracer->injectTimePeriod = params->injectTimePeriod; particletracer->writeTimePeriod = params->writeTimePeriod; particletracer->dt = params->dt; particletracer->dx = params->xlength / params->imax; particletracer->dy = params->ylength / params->jmax; particletracer->xlength = params->xlength; particletracer->ylength = params->ylength; particletracer->x1 = params->x1; particletracer->y1 = params->y1; particletracer->x2 = params->x2; particletracer->y2 = params->y2; particletracer->lastInjectTime = params->startTime; particletracer->lastUpdateTime = params->startTime; particletracer->lastWriteTime = params->startTime; particletracer->pointer = 0; particletracer->totalParticles = 0; particletracer->removedParticles = 0; particletracer->imax = params->imax; particletracer->jmax = params->jmax; particletracer->imaxLocal = d->comm.imaxLocal; particletracer->jmaxLocal = d->comm.jmaxLocal; particletracer->removedParticles = 0; // Estimating the number of particles over the number of timesteps that could be // required. particletracer->estimatedNumParticles = (particletracer->imaxLocal * particletracer->jmaxLocal); // Allocating memory for the estimated particles over the timesteps. particletracer->particlePool = malloc( sizeof(Particle) * particletracer->estimatedNumParticles); // Initializing the number of particles to 0 and turning OFF all of the particles. // Contain information in x and y length metric, not i and j discretization metrics. for (int i = 0; i < particletracer->estimatedNumParticles; ++i) { particletracer->particlePool[i].x = 0.0; particletracer->particlePool[i].y = 0.0; particletracer->particlePool[i].flag = false; } // Creating a linearly spaced particle line. particletracer->linSpaceLine = malloc( sizeof(Particle) * particletracer->numberOfParticles); // Creating an array for each rank that will hold information about // offsets from other ranks. Holds each ranks x and y length metrics. particletracer->offset = (double*)malloc(sizeof(double) * 4 * particletracer->size); // Calculating each ranks local x and y length metrics. double offset[4][particletracer->size]; // Calculating each ranks x and y local lengths. particletracer->xLocal = d->xLocal; particletracer->yLocal = d->yLocal; double xLocal[particletracer->size]; double yLocal[particletracer->size]; // Calculate own x and y length metric offset based on other ranks offset data. particletracer->xOffset = d->xOffset; particletracer->yOffset = d->yOffset; particletracer->xOffsetEnd = d->xOffsetEnd; particletracer->yOffsetEnd = d->yOffsetEnd; printf("Rank : %d, xOffset : %.2f, yOffset : %.2f, xOffsetEnd : %.2f, yOffsetEnd : " "%.2f\n", particletracer->rank, particletracer->xOffset, particletracer->yOffset, particletracer->xOffsetEnd, particletracer->yOffsetEnd); #ifdef _MPI // Gather each ranks x and y length metric that marks each ranks own territory. // Once the boundary leaves local domain, then it needs to know which ranks to send. // And to know whos boundary it is, we need to know the rank. MPI_Allgather(&particletracer->xOffset, 1, MPI_DOUBLE, offset[0], 1, MPI_DOUBLE, d->comm.comm); MPI_Allgather(&particletracer->yOffset, 1, MPI_DOUBLE, offset[1], 1, MPI_DOUBLE, d->comm.comm); MPI_Allgather(&particletracer->xOffsetEnd, 1, MPI_DOUBLE, offset[2], 1, MPI_DOUBLE, d->comm.comm); MPI_Allgather(&particletracer->yOffsetEnd, 1, MPI_DOUBLE, offset[3], 1, MPI_DOUBLE, d->comm.comm); #endif memcpy(particletracer->offset, offset, sizeof(offset)); particleRandomizer(particletracer); #ifdef _MPI // Create the mpi_particle datatype MPI_Datatype mpi_particle; int lengths[3] = { 1, 1, 1 }; MPI_Aint displacements[3]; Particle dummy_particle; MPI_Aint base_address; MPI_Get_address(&dummy_particle, &base_address); MPI_Get_address(&dummy_particle.x, &displacements[0]); MPI_Get_address(&dummy_particle.y, &displacements[1]); MPI_Get_address(&dummy_particle.flag, &displacements[2]); displacements[0] = MPI_Aint_diff(displacements[0], base_address); displacements[1] = MPI_Aint_diff(displacements[1], base_address); displacements[2] = MPI_Aint_diff(displacements[2], base_address); MPI_Datatype types[3] = { MPI_DOUBLE, MPI_DOUBLE, MPI_C_BOOL }; MPI_Type_create_struct(3, lengths, displacements, types, &particletracer->mpi_particle); MPI_Type_commit(&particletracer->mpi_particle); #endif } void printParticles(ParticleTracer* particletracer) { for (int i = 0; i < particletracer->totalParticles; ++i) { printf("Rank : %d Particle position X : %.2f, Y : %.2f, flag : %d, total pt : " "%d, pointer : %d, xOffset : %.2f, yOffset : %.2f, xOffsetEnd : %.2f, " "yOffsetEnd : %.2f\n", particletracer->rank, particletracer->particlePool[i].x, particletracer->particlePool[i].y, particletracer->particlePool[i].flag, particletracer->totalParticles, particletracer->pointer, particletracer->xOffset, particletracer->yOffset, particletracer->xOffsetEnd, particletracer->yOffsetEnd); } } void injectParticles(ParticleTracer* particletracer, double* s) { double x, y; compress(particletracer); particleRandomizer(particletracer); int imaxLocal = particletracer->imaxLocal; int jmaxLocal = particletracer->jmaxLocal; for (int i = 0; i < particletracer->numberOfParticles; ++i) { x = particletracer->linSpaceLine[i].x; y = particletracer->linSpaceLine[i].y; if (x >= particletracer->xOffset && y >= particletracer->yOffset && x <= particletracer->xOffsetEnd && y <= particletracer->yOffsetEnd) { particletracer->particlePool[particletracer->pointer].x = x; particletracer->particlePool[particletracer->pointer].y = y; int i = particletracer->particlePool[particletracer->pointer].x / particletracer->dx; int j = particletracer->particlePool[particletracer->pointer].y / particletracer->dy; int iOffset = particletracer->xOffset / particletracer->dx, jOffset = particletracer->yOffset / particletracer->dy; if (S(i - iOffset, j - jOffset) == FLUID) { particletracer->particlePool[particletracer->pointer].flag = true; ++(particletracer->pointer); ++(particletracer->totalParticles); } } } } void advanceParticles(ParticleTracer* particletracer, double* restrict u, double* restrict v, double* restrict s, Comm* comm, double time) { int imax = particletracer->imax; int jmax = particletracer->jmax; int imaxLocal = particletracer->imaxLocal; int jmaxLocal = particletracer->jmaxLocal; double dx = particletracer->dx; double dy = particletracer->dy; double xlength = particletracer->xlength; double ylength = particletracer->ylength; Particle buff[particletracer->size][(particletracer->estimatedNumParticles)]; memset(buff, 0, sizeof(buff)); Particle recvbuff[particletracer->size][(particletracer->estimatedNumParticles)]; memset(buff, 0, sizeof(recvbuff)); int particleBufIndex[particletracer->size], recvparticleBufIndex[particletracer->size]; memset(particleBufIndex, 0, sizeof(particleBufIndex)); memset(recvparticleBufIndex, 0, sizeof(recvparticleBufIndex)); for (int i = 0; i < particletracer->totalParticles; ++i) { if (particletracer->particlePool[i].flag == true) { double xTemp = particletracer->particlePool[i].x; double yTemp = particletracer->particlePool[i].y; double x = xTemp - particletracer->xOffset; double y = yTemp - particletracer->yOffset; int iCoord = (int)(x / dx) + 1; int jCoord = (int)((y + 0.5 * dy) / dy) + 1; double x1 = (double)(iCoord - 1) * dx; double y1 = ((double)(jCoord - 1) - 0.5) * dy; double x2 = (double)iCoord * dx; double y2 = ((double)jCoord - 0.5) * dy; double u_n = (1.0 / (dx * dy)) * ((x2 - x) * (y2 - y) * U(iCoord - 1, jCoord - 1) + (x - x1) * (y2 - y) * U(iCoord, jCoord - 1) + (x2 - x) * (y - y1) * U(iCoord - 1, jCoord) + (x - x1) * (y - y1) * U(iCoord, jCoord)); double new_x = (x + particletracer->xOffset) + particletracer->dt * u_n; particletracer->particlePool[i].x = new_x; iCoord = (int)((x + 0.5 * dx) / dx) + 1; jCoord = (int)(y / dy) + 1; x1 = ((double)(iCoord - 1) - 0.5) * dx; y1 = (double)(jCoord - 1) * dy; x2 = ((double)iCoord - 0.5) * dx; y2 = (double)jCoord * dy; double v_n = (1.0 / (dx * dy)) * ((x2 - x) * (y2 - y) * V(iCoord - 1, jCoord - 1) + (x - x1) * (y2 - y) * V(iCoord, jCoord - 1) + (x2 - x) * (y - y1) * V(iCoord - 1, jCoord) + (x - x1) * (y - y1) * V(iCoord, jCoord)); double new_y = (y + particletracer->yOffset) + particletracer->dt * v_n; particletracer->particlePool[i].y = new_y; if (((new_x < particletracer->xOffset) || (new_x > particletracer->xOffsetEnd) || (new_y < particletracer->yOffset) || (new_y > particletracer->yOffsetEnd))) { // New logic to transfer particles to neighbouring ranks or discard the // particle. #ifdef _MPI for (int i = 0; i < particletracer->size; ++i) { if ((new_x >= particletracer->offset[i + particletracer->size * XOFFSET]) && (new_x <= particletracer ->offset[i + particletracer->size * XOFFSETEND]) && (new_y >= particletracer->offset[i + particletracer->size * YOFFSET]) && (new_y <= particletracer ->offset[i + particletracer->size * YOFFSETEND]) && i != particletracer->rank) { buff[i][particleBufIndex[i]].x = new_x; buff[i][particleBufIndex[i]].y = new_y; buff[i][particleBufIndex[i]].flag = true; ++particleBufIndex[i]; } } #endif particletracer->particlePool[i].flag = false; particletracer->removedParticles++; } int i_new = new_x / dx, j_new = new_y / dy; int iOffset = particletracer->xOffset / dx, jOffset = particletracer->yOffset / dy; if (S(i_new - iOffset, j_new - jOffset) != FLUID) { particletracer->particlePool[i].flag = false; particletracer->removedParticles++; } } } #ifdef _MPI for (int i = 0; i < particletracer->size; ++i) { if (i != comm->rank) { MPI_Send(&particleBufIndex[i], 1, MPI_INT, i, 0, comm->comm); } } for (int i = 0; i < particletracer->size; ++i) { if (i != particletracer->rank) { MPI_Recv(&recvparticleBufIndex[i], 1, MPI_INT, i, 0, comm->comm, MPI_STATUS_IGNORE); // if (0 !=recvparticleBufIndex[i]) { // printf("Rank %d will receive %d particles from rank %d\n", // particletracer->rank, // recvparticleBufIndex[i], // i); // } } } for (int i = 0; i < particletracer->size; ++i) { if (i != particletracer->rank) { MPI_Send(buff[i], particleBufIndex[i], particletracer->mpi_particle, i, 0, comm->comm); } } for (int i = 0; i < particletracer->size; ++i) { if (i != particletracer->rank) { MPI_Recv(recvbuff[i], recvparticleBufIndex[i], particletracer->mpi_particle, i, 0, comm->comm, MPI_STATUS_IGNORE); } } for (int i = 0; i < particletracer->size; ++i) { if (i != particletracer->rank) { for (int j = 0; j < recvparticleBufIndex[i]; ++j) { particletracer->particlePool[particletracer->pointer].x = recvbuff[i][j] .x; particletracer->particlePool[particletracer->pointer].y = recvbuff[i][j] .y; particletracer->particlePool[particletracer->pointer].flag = true; ++(particletracer->pointer); ++(particletracer->totalParticles); } } } #endif } void freeParticles(ParticleTracer* particletracer) { free(particletracer->particlePool); free(particletracer->linSpaceLine); free(particletracer->offset); } void writeParticles(ParticleTracer* particletracer, Comm* comm) { int collectedBuffIndex[particletracer->size]; compress(particletracer); #ifdef _MPI MPI_Gather(&particletracer->totalParticles, 1, MPI_INT, collectedBuffIndex, 1, MPI_INT, 0, comm->comm); if (particletracer->rank != 0) { Particle buff[particletracer->totalParticles]; for (int i = 0; i < particletracer->totalParticles; ++i) { buff[i].x = particletracer->particlePool[i].x; buff[i].y = particletracer->particlePool[i].y; buff[i].flag = particletracer->particlePool[i].flag; // printf("Rank : %d sending to rank 0 X : %.2f, Y : %.2f with totalpt : // %d\n", particletracer->rank, buff[i].x, buff[i].y, // particletracer->totalParticles); } MPI_Send(buff, particletracer->totalParticles, particletracer->mpi_particle, 0, 1, comm->comm); } #endif if (particletracer->rank == 0) { char filename[50]; FILE* fp; snprintf(filename, 50, "vis_files/particles_%d.dat", ts); fp = fopen(filename, "w"); if (fp == NULL) { printf("Error!\n"); exit(EXIT_FAILURE); } // fprintf(fp, "# vtk DataFile Version 3.0\n"); // fprintf(fp, "PAMPI cfd solver particle tracing file\n"); // fprintf(fp, "ASCII\n"); // fprintf(fp, "DATASET UNSTRUCTURED_GRID\n"); // fprintf(fp, "FIELD FieldData 2\n"); // fprintf(fp, "TIME 1 1 double\n"); // fprintf(fp, "%d\n", ts); // fprintf(fp, "CYCLE 1 1 int\n"); // fprintf(fp, "1\n"); #ifdef _MPI int overallTotalParticles = sum(collectedBuffIndex, particletracer->size); // fprintf(fp, "POINTS %d float\n", overallTotalParticles); // printf("Total particles : %d\n", overallTotalParticles); for (int i = 1; i < particletracer->size; ++i) { Particle recvBuff[collectedBuffIndex[i]]; MPI_Recv(&recvBuff, collectedBuffIndex[i], particletracer->mpi_particle, i, 1, comm->comm, MPI_STATUS_IGNORE); for (int j = 0; j < collectedBuffIndex[i]; ++j) { double x = recvBuff[j].x; double y = recvBuff[j].y; fprintf(fp, "%f %f\n", x, y); // printf("Rank : 0 receiving from rank %d X : %.2f, Y : %.2f with totalpt // : %d\n", i, x, y, particletracer->totalParticles); } } #else int overallTotalParticles = particletracer->totalParticles; // fprintf(fp, "POINTS %d float\n", overallTotalParticles); // printf("Total particles : %d\n", overallTotalParticles); #endif for (int i = 0; i < particletracer->totalParticles; ++i) { double x = particletracer->particlePool[i].x; double y = particletracer->particlePool[i].y; fprintf(fp, "%f %f\n", x, y); } // fprintf(fp, "CELLS %d %d\n", overallTotalParticles, 2 * overallTotalParticles); // for (int i = 0; i < overallTotalParticles; ++i) // { // fprintf(fp, "1 %d\n", i); // } // fprintf(fp, "CELL_TYPES %d\n", overallTotalParticles); // for (int i = 0; i < overallTotalParticles; ++i) // { // fprintf(fp, "1\n"); // } fclose(fp); } ++ts; } void printParticleTracerParameters(ParticleTracer* particletracer) { printf("Particle Tracing data:\n"); printf("Rank : %d\n", particletracer->rank); printf("\tNumber of particles : %d being injected for every period of %.2f\n", particletracer->numberOfParticles, particletracer->injectTimePeriod); printf("\tstartTime : %.2f\n", particletracer->startTime); printf("\t(Line along which the particles are to be injected) \n\tx1 : %.2f, y1 : " "%.2f, x2 : %.2f, y2 : %.2f\n", particletracer->x1, particletracer->y1, particletracer->x2, particletracer->y2); printf("\tPointer : %d, TotalParticles : %d\n", particletracer->pointer, particletracer->totalParticles); printf("\tdt : %.2f, dx : %.2f, dy : %.2f\n", particletracer->dt, particletracer->dx, particletracer->dy); printf("\txOffset : %.2f, yOffset : %.2f\n", particletracer->xOffset, particletracer->yOffset); printf("\txOffsetEnd : %.2f, yOffsetEnd : %.2f\n", particletracer->xOffsetEnd, particletracer->yOffsetEnd); printf("\txLocal : %.2f, yLocal : %.2f\n", particletracer->xLocal, particletracer->yLocal); } void trace(ParticleTracer* particletracer, Discretization* d, double time) { if (time >= particletracer->startTime) { if ((time - particletracer->lastInjectTime) >= particletracer->injectTimePeriod) { injectParticles(particletracer, d->grid.s); particletracer->lastInjectTime = time; } if ((time - particletracer->lastWriteTime) >= particletracer->writeTimePeriod) { writeParticles(particletracer, &d->comm); particletracer->lastWriteTime = time; } advanceParticles(particletracer, d->u, d->v, d->grid.s, &d->comm, time); if (particletracer->removedParticles > (particletracer->totalParticles * 0.2)) { compress(particletracer); } particletracer->lastUpdateTime = time; } } void compress(ParticleTracer* particletracer) { Particle* memPool = particletracer->particlePool; Particle tempPool[particletracer->totalParticles]; int totalParticles = 0; // printf("\nPerforming compression ..."); for (int i = 0; i < particletracer->totalParticles; ++i) { if (memPool[i].flag == true) { tempPool[totalParticles].x = memPool[i].x; tempPool[totalParticles].y = memPool[i].y; tempPool[totalParticles].flag = memPool[i].flag; ++totalParticles; } } // printf(" remove %d particles\n", particletracer->totalParticles - totalParticles); particletracer->totalParticles = totalParticles; particletracer->removedParticles = 0; particletracer->pointer = totalParticles; memcpy(particletracer->particlePool, tempPool, totalParticles * sizeof(Particle)); } void particleRandomizer(ParticleTracer* particletracer) { memset(particletracer->linSpaceLine, 0, sizeof(Particle) * particletracer->numberOfParticles); for (int i = 0; i < particletracer->numberOfParticles; ++i) { particletracer->linSpaceLine[i].x = (((double)rand() / RAND_MAX) * (particletracer->x2 - particletracer->x1)) + particletracer->x1; particletracer->linSpaceLine[i].y = (((double)rand() / RAND_MAX) * (particletracer->y2 - particletracer->y1)) + particletracer->y1; particletracer->linSpaceLine[i].flag = true; } }