forked from moebiusband/NuSiF-Solver
		
	Separate discretization and solver. Port Multigrid solver.
This commit is contained in:
		@@ -1,5 +1,5 @@
 | 
			
		||||
#=======================================================================================
 | 
			
		||||
# Copyright (C)  NHR@FAU, University Erlangen-Nuremberg.
 | 
			
		||||
# Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
 | 
			
		||||
# All rights reserved.
 | 
			
		||||
# Use of this source code is governed by a MIT-style
 | 
			
		||||
# license that can be found in the LICENSE file.
 | 
			
		||||
@@ -21,6 +21,7 @@ VPATH     = $(SRC_DIR)
 | 
			
		||||
SRC       = $(filter-out $(wildcard $(SRC_DIR)/*-*.c),$(wildcard $(SRC_DIR)/*.c))
 | 
			
		||||
ASM       = $(patsubst $(SRC_DIR)/%.c, $(BUILD_DIR)/%.s, $(SRC))
 | 
			
		||||
OBJ       = $(patsubst $(SRC_DIR)/%.c, $(BUILD_DIR)/%.o, $(SRC))
 | 
			
		||||
OBJ      += $(BUILD_DIR)/solver-$(SOLVER).o
 | 
			
		||||
SOURCES   = $(SRC) $(wildcard $(SRC_DIR)/*.h)
 | 
			
		||||
CPPFLAGS := $(CPPFLAGS) $(DEFINES) $(OPTIONS) $(INCLUDES)
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,12 +1,12 @@
 | 
			
		||||
# Supported: GCC, CLANG, ICC
 | 
			
		||||
TAG ?= CLANG
 | 
			
		||||
ENABLE_OPENMP ?= false
 | 
			
		||||
# Supported: sor, mg
 | 
			
		||||
SOLVER ?= sor
 | 
			
		||||
# Run in debug settings
 | 
			
		||||
DEBUG ?= false
 | 
			
		||||
 | 
			
		||||
#Feature options
 | 
			
		||||
OPTIONS +=  -DARRAY_ALIGNMENT=64
 | 
			
		||||
# OPTIONS +=  -DVERBOSE
 | 
			
		||||
#OPTIONS +=  -DVERBOSE
 | 
			
		||||
#OPTIONS +=  -DDEBUG
 | 
			
		||||
#OPTIONS +=  -DBOUNDCHECK
 | 
			
		||||
#OPTIONS +=  -DVERBOSE_AFFINITY
 | 
			
		||||
#OPTIONS +=  -DVERBOSE_DATASIZE
 | 
			
		||||
#OPTIONS +=  -DVERBOSE_TIMER
 | 
			
		||||
 
 | 
			
		||||
@@ -36,11 +36,13 @@ te      10.0		# final time
 | 
			
		||||
dt      0.02	    # time stepsize
 | 
			
		||||
tau     0.5	    	# safety factor for time stepsize control (<0 constant delt)
 | 
			
		||||
 | 
			
		||||
# Pressure Iteration Data:
 | 
			
		||||
# Solver Data:
 | 
			
		||||
# -----------------------
 | 
			
		||||
 | 
			
		||||
itermax  1000		# maximal number of pressure iteration in one time step
 | 
			
		||||
eps      0.001		# stopping tolerance for pressure iteration
 | 
			
		||||
rho      0.5
 | 
			
		||||
omg      1.7		# relaxation parameter for SOR iteration
 | 
			
		||||
gamma    0.9		# upwind differencing factor gamma
 | 
			
		||||
levels   5         # Multigrid levels
 | 
			
		||||
#===============================================================================
 | 
			
		||||
 
 | 
			
		||||
@@ -2,16 +2,18 @@ CC   = clang
 | 
			
		||||
GCC  = cc
 | 
			
		||||
LINKER = $(CC)
 | 
			
		||||
 | 
			
		||||
ifeq ($(ENABLE_OPENMP),true)
 | 
			
		||||
ifeq ($(strip $(ENABLE_OPENMP)),true)
 | 
			
		||||
OPENMP   = -fopenmp
 | 
			
		||||
#OPENMP   = -Xpreprocessor -fopenmp #required on Macos with homebrew libomp
 | 
			
		||||
LIBS     = # -lomp
 | 
			
		||||
endif
 | 
			
		||||
ifeq ($(strip $(DEBUG)),true)
 | 
			
		||||
CFLAGS   = -O0 -g -std=c17
 | 
			
		||||
else
 | 
			
		||||
CFLAGS   = -O3 -std=c17 $(OPENMP)
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
VERSION  = --version
 | 
			
		||||
# CFLAGS   = -O3 -std=c17 $(OPENMP)
 | 
			
		||||
CFLAGS   = -Ofast -std=c17
 | 
			
		||||
#CFLAGS   = -Ofast -fnt-store=aggressive  -std=c99 $(OPENMP) #AMD CLANG
 | 
			
		||||
LFLAGS   = $(OPENMP) -lm
 | 
			
		||||
DEFINES  = -D_GNU_SOURCE# -DDEBUG
 | 
			
		||||
DEFINES  = -D_GNU_SOURCE
 | 
			
		||||
INCLUDES =
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										435
									
								
								BasicSolver/2D-seq/src/discretization.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										435
									
								
								BasicSolver/2D-seq/src/discretization.c
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,435 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C)  NHR@FAU, University Erlangen-Nuremberg.
 | 
			
		||||
 * All rights reserved. This file is part of nusif-solver.
 | 
			
		||||
 * Use of this source code is governed by a MIT style
 | 
			
		||||
 * license that can be found in the LICENSE file.
 | 
			
		||||
 */
 | 
			
		||||
#include <float.h>
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
 | 
			
		||||
#include "allocate.h"
 | 
			
		||||
#include "discretization.h"
 | 
			
		||||
#include "parameter.h"
 | 
			
		||||
#include "util.h"
 | 
			
		||||
 | 
			
		||||
static void print(Discretization* d, double* grid)
 | 
			
		||||
{
 | 
			
		||||
    int imax = d->grid.imax;
 | 
			
		||||
 | 
			
		||||
    for (int j = 0; j < d->grid.jmax + 2; j++) {
 | 
			
		||||
        printf("%02d: ", j);
 | 
			
		||||
        for (int i = 0; i < d->grid.imax + 2; i++) {
 | 
			
		||||
            printf("%12.8f  ", grid[j * (imax + 2) + i]);
 | 
			
		||||
        }
 | 
			
		||||
        printf("\n");
 | 
			
		||||
    }
 | 
			
		||||
    fflush(stdout);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void printConfig(Discretization* d)
 | 
			
		||||
{
 | 
			
		||||
    printf("Parameters for #%s#\n", d->problem);
 | 
			
		||||
    printf("Boundary conditions Left:%d Right:%d Bottom:%d Top:%d\n",
 | 
			
		||||
        d->bcLeft,
 | 
			
		||||
        d->bcRight,
 | 
			
		||||
        d->bcBottom,
 | 
			
		||||
        d->bcTop);
 | 
			
		||||
    printf("\tReynolds number: %.2f\n", d->re);
 | 
			
		||||
    printf("\tGx Gy: %.2f %.2f\n", d->gx, d->gy);
 | 
			
		||||
    printf("Geometry data:\n");
 | 
			
		||||
    printf("\tDomain box size (x, y): %.2f, %.2f\n", d->grid.xlength, d->grid.ylength);
 | 
			
		||||
    printf("\tCells (x, y): %d, %d\n", d->grid.imax, d->grid.jmax);
 | 
			
		||||
    printf("Timestep parameters:\n");
 | 
			
		||||
    printf("\tDefault stepsize: %.2f, Final time %.2f\n", d->dt, d->te);
 | 
			
		||||
    printf("\tdt bound: %.6f\n", d->dtBound);
 | 
			
		||||
    printf("\tTau factor: %.2f\n", d->tau);
 | 
			
		||||
    printf("Iterative d parameters:\n");
 | 
			
		||||
    printf("\tgamma factor: %f\n", d->gamma);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void initDiscretization(Discretization* d, Parameter* p)
 | 
			
		||||
{
 | 
			
		||||
    d->problem      = p->name;
 | 
			
		||||
    d->bcLeft       = p->bcLeft;
 | 
			
		||||
    d->bcRight      = p->bcRight;
 | 
			
		||||
    d->bcBottom     = p->bcBottom;
 | 
			
		||||
    d->bcTop        = p->bcTop;
 | 
			
		||||
    d->grid.imax    = p->imax;
 | 
			
		||||
    d->grid.jmax    = p->jmax;
 | 
			
		||||
    d->grid.xlength = p->xlength;
 | 
			
		||||
    d->grid.ylength = p->ylength;
 | 
			
		||||
    d->grid.dx      = p->xlength / p->imax;
 | 
			
		||||
    d->grid.dy      = p->ylength / p->jmax;
 | 
			
		||||
    d->re           = p->re;
 | 
			
		||||
    d->gx           = p->gx;
 | 
			
		||||
    d->gy           = p->gy;
 | 
			
		||||
    d->dt           = p->dt;
 | 
			
		||||
    d->te           = p->te;
 | 
			
		||||
    d->tau          = p->tau;
 | 
			
		||||
    d->gamma        = p->gamma;
 | 
			
		||||
 | 
			
		||||
    int imax    = d->grid.imax;
 | 
			
		||||
    int jmax    = d->grid.jmax;
 | 
			
		||||
    size_t size = (imax + 2) * (jmax + 2) * sizeof(double);
 | 
			
		||||
    d->u        = allocate(64, size);
 | 
			
		||||
    d->v        = allocate(64, size);
 | 
			
		||||
    d->p        = allocate(64, size);
 | 
			
		||||
    d->rhs      = allocate(64, size);
 | 
			
		||||
    d->f        = allocate(64, size);
 | 
			
		||||
    d->g        = allocate(64, size);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < (imax + 2) * (jmax + 2); i++) {
 | 
			
		||||
        d->u[i]   = p->u_init;
 | 
			
		||||
        d->v[i]   = p->v_init;
 | 
			
		||||
        d->p[i]   = p->p_init;
 | 
			
		||||
        d->rhs[i] = 0.0;
 | 
			
		||||
        d->f[i]   = 0.0;
 | 
			
		||||
        d->g[i]   = 0.0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    double dx        = d->grid.dx;
 | 
			
		||||
    double dy        = d->grid.dy;
 | 
			
		||||
    double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy);
 | 
			
		||||
    d->dtBound       = 0.5 * d->re * 1.0 / invSqrSum;
 | 
			
		||||
#ifdef VERBOSE
 | 
			
		||||
    printConfig(d);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void computeRHS(Discretization* d)
 | 
			
		||||
{
 | 
			
		||||
    int imax    = d->grid.imax;
 | 
			
		||||
    int jmax    = d->grid.jmax;
 | 
			
		||||
    double idx  = 1.0 / d->grid.dx;
 | 
			
		||||
    double idy  = 1.0 / d->grid.dy;
 | 
			
		||||
    double idt  = 1.0 / d->dt;
 | 
			
		||||
    double* rhs = d->rhs;
 | 
			
		||||
    double* f   = d->f;
 | 
			
		||||
    double* g   = d->g;
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            RHS(i, j) = idt *
 | 
			
		||||
                        ((F(i, j) - F(i - 1, j)) * idx + (G(i, j) - G(i, j - 1)) * idy);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static double maxElement(Discretization* d, double* m)
 | 
			
		||||
{
 | 
			
		||||
    int size      = (d->grid.imax + 2) * (d->grid.jmax + 2);
 | 
			
		||||
    double maxval = DBL_MIN;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < size; i++) {
 | 
			
		||||
        maxval = MAX(maxval, fabs(m[i]));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return maxval;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void normalizePressure(Discretization* d)
 | 
			
		||||
{
 | 
			
		||||
    int size    = (d->grid.imax + 2) * (d->grid.jmax + 2);
 | 
			
		||||
    double* p   = d->p;
 | 
			
		||||
    double avgP = 0.0;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < size; i++) {
 | 
			
		||||
        avgP += p[i];
 | 
			
		||||
    }
 | 
			
		||||
    avgP /= size;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < size; i++) {
 | 
			
		||||
        p[i] = p[i] - avgP;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void computeTimestep(Discretization* d)
 | 
			
		||||
{
 | 
			
		||||
    double dt   = d->dtBound;
 | 
			
		||||
    double dx   = d->grid.dx;
 | 
			
		||||
    double dy   = d->grid.dy;
 | 
			
		||||
    double umax = maxElement(d, d->u);
 | 
			
		||||
    double vmax = maxElement(d, d->v);
 | 
			
		||||
 | 
			
		||||
    if (umax > 0) {
 | 
			
		||||
        dt = (dt > dx / umax) ? dx / umax : dt;
 | 
			
		||||
    }
 | 
			
		||||
    if (vmax > 0) {
 | 
			
		||||
        dt = (dt > dy / vmax) ? dy / vmax : dt;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    d->dt = dt * d->tau;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void setBoundaryConditions(Discretization* d)
 | 
			
		||||
{
 | 
			
		||||
    int imax  = d->grid.imax;
 | 
			
		||||
    int jmax  = d->grid.jmax;
 | 
			
		||||
    double* u = d->u;
 | 
			
		||||
    double* v = d->v;
 | 
			
		||||
 | 
			
		||||
    // Left boundary
 | 
			
		||||
    switch (d->bcLeft) {
 | 
			
		||||
    case NOSLIP:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(0, j) = 0.0;
 | 
			
		||||
            V(0, j) = -V(1, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case SLIP:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(0, j) = 0.0;
 | 
			
		||||
            V(0, j) = V(1, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case OUTFLOW:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(0, j) = U(1, j);
 | 
			
		||||
            V(0, j) = V(1, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case PERIODIC:
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Right boundary
 | 
			
		||||
    switch (d->bcRight) {
 | 
			
		||||
    case NOSLIP:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(imax, j)     = 0.0;
 | 
			
		||||
            V(imax + 1, j) = -V(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case SLIP:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(imax, j)     = 0.0;
 | 
			
		||||
            V(imax + 1, j) = V(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case OUTFLOW:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(imax, j)     = U(imax - 1, j);
 | 
			
		||||
            V(imax + 1, j) = V(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case PERIODIC:
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Bottom boundary
 | 
			
		||||
    switch (d->bcBottom) {
 | 
			
		||||
    case NOSLIP:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            V(i, 0) = 0.0;
 | 
			
		||||
            U(i, 0) = -U(i, 1);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case SLIP:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            V(i, 0) = 0.0;
 | 
			
		||||
            U(i, 0) = U(i, 1);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case OUTFLOW:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            U(i, 0) = U(i, 1);
 | 
			
		||||
            V(i, 0) = V(i, 1);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case PERIODIC:
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Top boundary
 | 
			
		||||
    switch (d->bcTop) {
 | 
			
		||||
    case NOSLIP:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            V(i, jmax)     = 0.0;
 | 
			
		||||
            U(i, jmax + 1) = -U(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case SLIP:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            V(i, jmax)     = 0.0;
 | 
			
		||||
            U(i, jmax + 1) = U(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case OUTFLOW:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            U(i, jmax + 1) = U(i, jmax);
 | 
			
		||||
            V(i, jmax)     = V(i, jmax - 1);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case PERIODIC:
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void setSpecialBoundaryCondition(Discretization* d)
 | 
			
		||||
{
 | 
			
		||||
    int imax   = d->grid.imax;
 | 
			
		||||
    int jmax   = d->grid.jmax;
 | 
			
		||||
    double mDy = d->grid.dy;
 | 
			
		||||
    double* u  = d->u;
 | 
			
		||||
 | 
			
		||||
    if (strcmp(d->problem, "dcavity") == 0) {
 | 
			
		||||
        for (int i = 1; i < imax; i++) {
 | 
			
		||||
            U(i, jmax + 1) = 2.0 - U(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
    } else if (strcmp(d->problem, "canal") == 0) {
 | 
			
		||||
        double ylength = d->grid.ylength;
 | 
			
		||||
        double y;
 | 
			
		||||
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            y       = mDy * (j - 0.5);
 | 
			
		||||
            U(0, j) = y * (ylength - y) * 4.0 / (ylength * ylength);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void computeFG(Discretization* d)
 | 
			
		||||
{
 | 
			
		||||
    double* u        = d->u;
 | 
			
		||||
    double* v        = d->v;
 | 
			
		||||
    double* f        = d->f;
 | 
			
		||||
    double* g        = d->g;
 | 
			
		||||
    int imax         = d->grid.imax;
 | 
			
		||||
    int jmax         = d->grid.jmax;
 | 
			
		||||
    double gx        = d->gx;
 | 
			
		||||
    double gy        = d->gy;
 | 
			
		||||
    double gamma     = d->gamma;
 | 
			
		||||
    double dt        = d->dt;
 | 
			
		||||
    double inverseRe = 1.0 / d->re;
 | 
			
		||||
    double inverseDx = 1.0 / d->grid.dx;
 | 
			
		||||
    double inverseDy = 1.0 / d->grid.dy;
 | 
			
		||||
    double du2dx, dv2dy, duvdx, duvdy;
 | 
			
		||||
    double du2dx2, du2dy2, dv2dx2, dv2dy2;
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            du2dx = inverseDx * 0.25 *
 | 
			
		||||
                        ((U(i, j) + U(i + 1, j)) * (U(i, j) + U(i + 1, j)) -
 | 
			
		||||
                            (U(i, j) + U(i - 1, j)) * (U(i, j) + U(i - 1, j))) +
 | 
			
		||||
                    gamma * inverseDx * 0.25 *
 | 
			
		||||
                        (fabs(U(i, j) + U(i + 1, j)) * (U(i, j) - U(i + 1, j)) +
 | 
			
		||||
                            fabs(U(i, j) + U(i - 1, j)) * (U(i, j) - U(i - 1, j)));
 | 
			
		||||
 | 
			
		||||
            duvdy = inverseDy * 0.25 *
 | 
			
		||||
                        ((V(i, j) + V(i + 1, j)) * (U(i, j) + U(i, j + 1)) -
 | 
			
		||||
                            (V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) + U(i, j - 1))) +
 | 
			
		||||
                    gamma * inverseDy * 0.25 *
 | 
			
		||||
                        (fabs(V(i, j) + V(i + 1, j)) * (U(i, j) - U(i, j + 1)) +
 | 
			
		||||
                            fabs(V(i, j - 1) + V(i + 1, j - 1)) *
 | 
			
		||||
                                (U(i, j) - U(i, j - 1)));
 | 
			
		||||
 | 
			
		||||
            du2dx2  = inverseDx * inverseDx * (U(i + 1, j) - 2.0 * U(i, j) + U(i - 1, j));
 | 
			
		||||
            du2dy2  = inverseDy * inverseDy * (U(i, j + 1) - 2.0 * U(i, j) + U(i, j - 1));
 | 
			
		||||
            F(i, j) = U(i, j) + dt * (inverseRe * (du2dx2 + du2dy2) - du2dx - duvdy + gx);
 | 
			
		||||
 | 
			
		||||
            duvdx = inverseDx * 0.25 *
 | 
			
		||||
                        ((U(i, j) + U(i, j + 1)) * (V(i, j) + V(i + 1, j)) -
 | 
			
		||||
                            (U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) + V(i - 1, j))) +
 | 
			
		||||
                    gamma * inverseDx * 0.25 *
 | 
			
		||||
                        (fabs(U(i, j) + U(i, j + 1)) * (V(i, j) - V(i + 1, j)) +
 | 
			
		||||
                            fabs(U(i - 1, j) + U(i - 1, j + 1)) *
 | 
			
		||||
                                (V(i, j) - V(i - 1, j)));
 | 
			
		||||
 | 
			
		||||
            dv2dy = inverseDy * 0.25 *
 | 
			
		||||
                        ((V(i, j) + V(i, j + 1)) * (V(i, j) + V(i, j + 1)) -
 | 
			
		||||
                            (V(i, j) + V(i, j - 1)) * (V(i, j) + V(i, j - 1))) +
 | 
			
		||||
                    gamma * inverseDy * 0.25 *
 | 
			
		||||
                        (fabs(V(i, j) + V(i, j + 1)) * (V(i, j) - V(i, j + 1)) +
 | 
			
		||||
                            fabs(V(i, j) + V(i, j - 1)) * (V(i, j) - V(i, j - 1)));
 | 
			
		||||
 | 
			
		||||
            dv2dx2  = inverseDx * inverseDx * (V(i + 1, j) - 2.0 * V(i, j) + V(i - 1, j));
 | 
			
		||||
            dv2dy2  = inverseDy * inverseDy * (V(i, j + 1) - 2.0 * V(i, j) + V(i, j - 1));
 | 
			
		||||
            G(i, j) = V(i, j) + dt * (inverseRe * (dv2dx2 + dv2dy2) - duvdx - dv2dy + gy);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* ---------------------- boundary of F --------------------------- */
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        F(0, j)    = U(0, j);
 | 
			
		||||
        F(imax, j) = U(imax, j);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* ---------------------- boundary of G --------------------------- */
 | 
			
		||||
    for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
        G(i, 0)    = V(i, 0);
 | 
			
		||||
        G(i, jmax) = V(i, jmax);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void adaptUV(Discretization* d)
 | 
			
		||||
{
 | 
			
		||||
    int imax       = d->grid.imax;
 | 
			
		||||
    int jmax       = d->grid.jmax;
 | 
			
		||||
    double* p      = d->p;
 | 
			
		||||
    double* u      = d->u;
 | 
			
		||||
    double* v      = d->v;
 | 
			
		||||
    double* f      = d->f;
 | 
			
		||||
    double* g      = d->g;
 | 
			
		||||
    double factorX = d->dt / d->grid.dx;
 | 
			
		||||
    double factorY = d->dt / d->grid.dy;
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            U(i, j) = F(i, j) - (P(i + 1, j) - P(i, j)) * factorX;
 | 
			
		||||
            V(i, j) = G(i, j) - (P(i, j + 1) - P(i, j)) * factorY;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void writeResult(Discretization* d)
 | 
			
		||||
{
 | 
			
		||||
    int imax  = d->grid.imax;
 | 
			
		||||
    int jmax  = d->grid.jmax;
 | 
			
		||||
    double dx = d->grid.dx;
 | 
			
		||||
    double dy = d->grid.dy;
 | 
			
		||||
    double* p = d->p;
 | 
			
		||||
    double* u = d->u;
 | 
			
		||||
    double* v = d->v;
 | 
			
		||||
    double x = 0.0, y = 0.0;
 | 
			
		||||
 | 
			
		||||
    FILE* fp;
 | 
			
		||||
    fp = fopen("pressure.dat", "w");
 | 
			
		||||
 | 
			
		||||
    if (fp == NULL) {
 | 
			
		||||
        printf("Error!\n");
 | 
			
		||||
        exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        y = (double)(j - 0.5) * dy;
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            x = (double)(i - 0.5) * dx;
 | 
			
		||||
            fprintf(fp, "%.2f %.2f %f\n", x, y, P(i, j));
 | 
			
		||||
        }
 | 
			
		||||
        fprintf(fp, "\n");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fclose(fp);
 | 
			
		||||
 | 
			
		||||
    fp = fopen("velocity.dat", "w");
 | 
			
		||||
 | 
			
		||||
    if (fp == NULL) {
 | 
			
		||||
        printf("Error!\n");
 | 
			
		||||
        exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        y = dy * (j - 0.5);
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            x           = dx * (i - 0.5);
 | 
			
		||||
            double velU = (U(i, j) + U(i - 1, j)) / 2.0;
 | 
			
		||||
            double velV = (V(i, j) + V(i, j - 1)) / 2.0;
 | 
			
		||||
            double len  = sqrt((velU * velU) + (velV * velV));
 | 
			
		||||
            fprintf(fp, "%.2f %.2f %f %f %f\n", x, y, velU, velV, len);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fclose(fp);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										40
									
								
								BasicSolver/2D-seq/src/discretization.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								BasicSolver/2D-seq/src/discretization.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,40 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C)  NHR@FAU, University Erlangen-Nuremberg.
 | 
			
		||||
 * All rights reserved. This file is part of nusif-solver.
 | 
			
		||||
 * Use of this source code is governed by a MIT style
 | 
			
		||||
 * license that can be found in the LICENSE file.
 | 
			
		||||
 */
 | 
			
		||||
#ifndef __DISCRETIZATION_H_
 | 
			
		||||
#define __DISCRETIZATION_H_
 | 
			
		||||
#include "grid.h"
 | 
			
		||||
#include "parameter.h"
 | 
			
		||||
 | 
			
		||||
enum BC { NOSLIP = 1, SLIP, OUTFLOW, PERIODIC };
 | 
			
		||||
 | 
			
		||||
typedef struct {
 | 
			
		||||
    /* geometry and grid information */
 | 
			
		||||
    Grid grid;
 | 
			
		||||
    /* arrays */
 | 
			
		||||
    double *p, *rhs;
 | 
			
		||||
    double *f, *g;
 | 
			
		||||
    double *u, *v;
 | 
			
		||||
    /* parameters */
 | 
			
		||||
    double re, tau, gamma;
 | 
			
		||||
    double gx, gy;
 | 
			
		||||
    /* time stepping */
 | 
			
		||||
    double dt, te;
 | 
			
		||||
    double dtBound;
 | 
			
		||||
    char* problem;
 | 
			
		||||
    int bcLeft, bcRight, bcBottom, bcTop;
 | 
			
		||||
} Discretization;
 | 
			
		||||
 | 
			
		||||
extern void initDiscretization(Discretization*, Parameter*);
 | 
			
		||||
extern void computeRHS(Discretization*);
 | 
			
		||||
extern void normalizePressure(Discretization*);
 | 
			
		||||
extern void computeTimestep(Discretization*);
 | 
			
		||||
extern void setBoundaryConditions(Discretization*);
 | 
			
		||||
extern void setSpecialBoundaryCondition(Discretization*);
 | 
			
		||||
extern void computeFG(Discretization*);
 | 
			
		||||
extern void adaptUV(Discretization*);
 | 
			
		||||
extern void writeResult(Discretization*);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -4,12 +4,11 @@
 | 
			
		||||
 * Use of this source code is governed by a MIT-style
 | 
			
		||||
 * license that can be found in the LICENSE file.
 | 
			
		||||
 */
 | 
			
		||||
#include <float.h>
 | 
			
		||||
#include <limits.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <unistd.h>
 | 
			
		||||
 | 
			
		||||
#include "discretization.h"
 | 
			
		||||
#include "parameter.h"
 | 
			
		||||
#include "progress.h"
 | 
			
		||||
#include "solver.h"
 | 
			
		||||
@@ -17,39 +16,41 @@
 | 
			
		||||
 | 
			
		||||
int main(int argc, char** argv)
 | 
			
		||||
{
 | 
			
		||||
    double S, E;
 | 
			
		||||
    Parameter params;
 | 
			
		||||
    Solver solver;
 | 
			
		||||
    initParameter(¶ms);
 | 
			
		||||
    double timeStart, timeStop;
 | 
			
		||||
    Parameter p;
 | 
			
		||||
    Discretization d;
 | 
			
		||||
    Solver s;
 | 
			
		||||
    initParameter(&p);
 | 
			
		||||
 | 
			
		||||
    if (argc != 2) {
 | 
			
		||||
        printf("Usage: %s <configFile>\n", argv[0]);
 | 
			
		||||
        exit(EXIT_SUCCESS);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    readParameter(¶ms, argv[1]);
 | 
			
		||||
    printParameter(¶ms);
 | 
			
		||||
    initSolver(&solver, ¶ms);
 | 
			
		||||
    readParameter(&p, argv[1]);
 | 
			
		||||
    printParameter(&p);
 | 
			
		||||
    initDiscretization(&d, &p);
 | 
			
		||||
    initSolver(&s, &d, &p);
 | 
			
		||||
#ifndef VERBOSE
 | 
			
		||||
    initProgress(solver.te);
 | 
			
		||||
    initProgress(d.te);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    double tau = solver.tau;
 | 
			
		||||
    double te  = solver.te;
 | 
			
		||||
    double tau = d.tau;
 | 
			
		||||
    double te  = d.te;
 | 
			
		||||
    double t   = 0.0;
 | 
			
		||||
    int nt     = 0;
 | 
			
		||||
 | 
			
		||||
    S = getTimeStamp();
 | 
			
		||||
    timeStart = getTimeStamp();
 | 
			
		||||
    while (t <= te) {
 | 
			
		||||
        if (tau > 0.0) computeTimestep(&solver);
 | 
			
		||||
        setBoundaryConditions(&solver);
 | 
			
		||||
        setSpecialBoundaryCondition(&solver);
 | 
			
		||||
        computeFG(&solver);
 | 
			
		||||
        computeRHS(&solver);
 | 
			
		||||
        if (nt % 100 == 0) normalizePressure(&solver);
 | 
			
		||||
        solveRB(&solver);
 | 
			
		||||
        adaptUV(&solver);
 | 
			
		||||
        t += solver.dt;
 | 
			
		||||
        if (tau > 0.0) computeTimestep(&d);
 | 
			
		||||
        setBoundaryConditions(&d);
 | 
			
		||||
        setSpecialBoundaryCondition(&d);
 | 
			
		||||
        computeFG(&d);
 | 
			
		||||
        computeRHS(&d);
 | 
			
		||||
        if (nt % 100 == 0) normalizePressure(&d);
 | 
			
		||||
        solve(&s, d.p, d.rhs);
 | 
			
		||||
        adaptUV(&d);
 | 
			
		||||
        t += d.dt;
 | 
			
		||||
        nt++;
 | 
			
		||||
 | 
			
		||||
#ifdef VERBOSE
 | 
			
		||||
@@ -58,9 +59,9 @@ int main(int argc, char** argv)
 | 
			
		||||
        printProgress(t);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
    E = getTimeStamp();
 | 
			
		||||
    timeStop = getTimeStamp();
 | 
			
		||||
    stopProgress();
 | 
			
		||||
    printf("Solution took %.2fs\n", E - S);
 | 
			
		||||
    writeResult(&solver);
 | 
			
		||||
    printf("Solution took %.2fs\n", timeStop - timeStart);
 | 
			
		||||
    writeResult(&d);
 | 
			
		||||
    return EXIT_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -24,6 +24,8 @@ void initParameter(Parameter* param)
 | 
			
		||||
    param->re      = 100.0;
 | 
			
		||||
    param->gamma   = 0.9;
 | 
			
		||||
    param->tau     = 0.5;
 | 
			
		||||
    param->rho     = 0.99;
 | 
			
		||||
    param->levels  = 5;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void readParameter(Parameter* param, const char* filename)
 | 
			
		||||
@@ -61,6 +63,7 @@ void readParameter(Parameter* param, const char* filename)
 | 
			
		||||
            PARSE_INT(imax);
 | 
			
		||||
            PARSE_INT(jmax);
 | 
			
		||||
            PARSE_INT(itermax);
 | 
			
		||||
            PARSE_INT(levels);
 | 
			
		||||
            PARSE_REAL(eps);
 | 
			
		||||
            PARSE_REAL(omg);
 | 
			
		||||
            PARSE_REAL(re);
 | 
			
		||||
@@ -78,6 +81,7 @@ void readParameter(Parameter* param, const char* filename)
 | 
			
		||||
            PARSE_REAL(u_init);
 | 
			
		||||
            PARSE_REAL(v_init);
 | 
			
		||||
            PARSE_REAL(p_init);
 | 
			
		||||
            PARSE_REAL(rho);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -108,4 +112,6 @@ void printParameter(Parameter* param)
 | 
			
		||||
    printf("\tepsilon (stopping tolerance) : %f\n", param->eps);
 | 
			
		||||
    printf("\tgamma (stopping tolerance) : %f\n", param->gamma);
 | 
			
		||||
    printf("\tomega (SOR relaxation): %f\n", param->omg);
 | 
			
		||||
    printf("\trho (SOR relaxation): %f\n", param->rho);
 | 
			
		||||
    printf("\tMultiGrid levels : %d\n", param->levels);
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -10,8 +10,8 @@
 | 
			
		||||
typedef struct {
 | 
			
		||||
    double xlength, ylength;
 | 
			
		||||
    int imax, jmax;
 | 
			
		||||
    int itermax;
 | 
			
		||||
    double eps, omg;
 | 
			
		||||
    int itermax, levels;
 | 
			
		||||
    double eps, omg, rho;
 | 
			
		||||
    double re, tau, gamma;
 | 
			
		||||
    double te, dt;
 | 
			
		||||
    double gx, gy;
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										192
									
								
								BasicSolver/2D-seq/src/solver-mg.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										192
									
								
								BasicSolver/2D-seq/src/solver-mg.c
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,192 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C) NHR@FAU, University Erlangen-Nuremberg.
 | 
			
		||||
 * All rights reserved. This file is part of nusif-solver.
 | 
			
		||||
 * Use of this source code is governed by a MIT style
 | 
			
		||||
 * license that can be found in the LICENSE file.
 | 
			
		||||
 */
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
 | 
			
		||||
#include "allocate.h"
 | 
			
		||||
#include "discretization.h"
 | 
			
		||||
#include "parameter.h"
 | 
			
		||||
#include "solver.h"
 | 
			
		||||
#include "util.h"
 | 
			
		||||
 | 
			
		||||
#define FINEST_LEVEL 0
 | 
			
		||||
#define S(i, j)      s[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define E(i, j)      e[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define R(i, j)      r[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define OLD(i, j)    old[(j) * (imax + 2) + (i)]
 | 
			
		||||
 | 
			
		||||
static void restrictMG(Solver* s, int level, int imax, int jmax)
 | 
			
		||||
{
 | 
			
		||||
    double* r   = s->r[level + 1];
 | 
			
		||||
    double* old = s->r[level];
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            R(i, j) = (OLD(2 * i - 1, 2 * j - 1) + OLD(2 * i, 2 * j - 1) * 2 +
 | 
			
		||||
                          OLD(2 * i + 1, 2 * j - 1) + OLD(2 * i - 1, 2 * j) * 2 +
 | 
			
		||||
                          OLD(2 * i, 2 * j) * 4 + OLD(2 * i + 1, 2 * j) * 2 +
 | 
			
		||||
                          OLD(2 * i - 1, 2 * j + 1) + OLD(2 * i, 2 * j + 1) * 2 +
 | 
			
		||||
                          OLD(2 * i + 1, 2 * j + 1)) /
 | 
			
		||||
                      16.0;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void prolongate(Solver* s, int level, int imax, int jmax)
 | 
			
		||||
{
 | 
			
		||||
    double* old = s->r[level + 1];
 | 
			
		||||
    double* e   = s->r[level];
 | 
			
		||||
 | 
			
		||||
    for (int j = 2; j < jmax + 1; j += 2) {
 | 
			
		||||
        for (int i = 2; i < imax + 1; i += 2) {
 | 
			
		||||
            E(i, j) = OLD(i / 2, j / 2);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void correct(Solver* s, double* p, int level, int imax, int jmax)
 | 
			
		||||
{
 | 
			
		||||
    double* e = s->e[level];
 | 
			
		||||
    for (int j = 1; j < jmax + 1; ++j) {
 | 
			
		||||
        for (int i = 1; i < imax + 1; ++i) {
 | 
			
		||||
            P(i, j) += E(i, j);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void setBoundaryCondition(double* p, int imax, int jmax)
 | 
			
		||||
{
 | 
			
		||||
    for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
        P(i, 0)        = P(i, 1);
 | 
			
		||||
        P(i, jmax + 1) = P(i, jmax);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        P(0, j)        = P(1, j);
 | 
			
		||||
        P(imax + 1, j) = P(imax, j);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static double smooth(Solver* s, double* p, double* rhs, int level, int imax, int jmax)
 | 
			
		||||
{
 | 
			
		||||
    double dx2    = s->grid->dx * s->grid->dx;
 | 
			
		||||
    double dy2    = s->grid->dy * s->grid->dy;
 | 
			
		||||
    double idx2   = 1.0 / dx2;
 | 
			
		||||
    double idy2   = 1.0 / dy2;
 | 
			
		||||
    double factor = s->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
 | 
			
		||||
    double* r     = s->r[level];
 | 
			
		||||
    double res    = 1.0;
 | 
			
		||||
    int pass, jsw, isw;
 | 
			
		||||
 | 
			
		||||
    jsw = 1;
 | 
			
		||||
 | 
			
		||||
    for (pass = 0; pass < 2; pass++) {
 | 
			
		||||
        isw = jsw;
 | 
			
		||||
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            for (int i = isw; i < imax + 1; i += 2) {
 | 
			
		||||
 | 
			
		||||
                R(i, j) = RHS(i, j) -
 | 
			
		||||
                          ((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
 | 
			
		||||
                              (P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
 | 
			
		||||
 | 
			
		||||
                P(i, j) -= (factor * R(i, j));
 | 
			
		||||
                res += (R(i, j) * R(i, j));
 | 
			
		||||
            }
 | 
			
		||||
            isw = 3 - isw;
 | 
			
		||||
        }
 | 
			
		||||
        jsw = 3 - jsw;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    res = res / (double)(imax * jmax);
 | 
			
		||||
    return res;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void initSolver(Solver* s, Discretization* d, Parameter* p)
 | 
			
		||||
{
 | 
			
		||||
    s->eps     = p->eps;
 | 
			
		||||
    s->omega   = p->omg;
 | 
			
		||||
    s->itermax = p->itermax;
 | 
			
		||||
    s->rho     = p->rho;
 | 
			
		||||
    s->levels  = p->levels;
 | 
			
		||||
    s->grid    = &d->grid;
 | 
			
		||||
 | 
			
		||||
    int imax   = s->grid->imax;
 | 
			
		||||
    int jmax   = s->grid->jmax;
 | 
			
		||||
    int levels = s->levels;
 | 
			
		||||
    printf("Using Multigrid solver with %d levels\n", levels);
 | 
			
		||||
 | 
			
		||||
    s->r = malloc(levels * sizeof(double*));
 | 
			
		||||
    s->e = malloc(levels * sizeof(double*));
 | 
			
		||||
 | 
			
		||||
    size_t size = (imax + 2) * (jmax + 2) * sizeof(double);
 | 
			
		||||
 | 
			
		||||
    for (int j = 0; j < levels; j++) {
 | 
			
		||||
        s->r[j] = allocate(64, size);
 | 
			
		||||
        s->e[j] = allocate(64, size);
 | 
			
		||||
 | 
			
		||||
        for (int i = 0; i < (imax + 2) * (jmax + 2); i++) {
 | 
			
		||||
            s->r[j][i] = 0.0;
 | 
			
		||||
            s->e[j][i] = 0.0;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double multiGrid(Solver* solver, double* p, double* rhs, int level, int imax, int jmax)
 | 
			
		||||
{
 | 
			
		||||
    double res = 0.0;
 | 
			
		||||
 | 
			
		||||
    // coarsest level TODO: Use direct solver?
 | 
			
		||||
    if (level == (solver->levels - 1)) {
 | 
			
		||||
        for (int i = 0; i < 5; i++) {
 | 
			
		||||
            smooth(solver, p, rhs, level, imax, jmax);
 | 
			
		||||
        }
 | 
			
		||||
        return res;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // pre-smoothing TODO: Make smoothing steps configurable?
 | 
			
		||||
    for (int i = 0; i < 5; i++) {
 | 
			
		||||
        smooth(solver, p, rhs, level, imax, jmax);
 | 
			
		||||
        if (level == FINEST_LEVEL) setBoundaryCondition(p, imax, jmax);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // restrict
 | 
			
		||||
    restrictMG(solver, level, imax, jmax);
 | 
			
		||||
 | 
			
		||||
    // MGSolver on residual and error.
 | 
			
		||||
    // TODO: What if there is a rest?
 | 
			
		||||
    multiGrid(solver,
 | 
			
		||||
        solver->e[level + 1],
 | 
			
		||||
        solver->r[level],
 | 
			
		||||
        level + 1,
 | 
			
		||||
        imax / 2,
 | 
			
		||||
        jmax / 2);
 | 
			
		||||
 | 
			
		||||
    // prolongate
 | 
			
		||||
    prolongate(solver, level, imax, jmax);
 | 
			
		||||
 | 
			
		||||
    // correct p on finer level using residual
 | 
			
		||||
    correct(solver, p, level, imax, jmax);
 | 
			
		||||
    if (level == FINEST_LEVEL) setBoundaryCondition(p, imax, jmax);
 | 
			
		||||
 | 
			
		||||
    // post-smoothing
 | 
			
		||||
    for (int i = 0; i < 5; i++) {
 | 
			
		||||
        res = smooth(solver, p, rhs, level, imax, jmax);
 | 
			
		||||
        if (level == FINEST_LEVEL) setBoundaryCondition(p, imax, jmax);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return res;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void solve(Solver* s, double* p, double* rhs)
 | 
			
		||||
{
 | 
			
		||||
    double res = multiGrid(s, p, rhs, 0, s->grid->imax, s->grid->jmax);
 | 
			
		||||
 | 
			
		||||
#ifdef VERBOSE
 | 
			
		||||
    printf("Residuum: %.6f\n", res);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										129
									
								
								BasicSolver/2D-seq/src/solver-sor.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										129
									
								
								BasicSolver/2D-seq/src/solver-sor.c
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,129 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C)  NHR@FAU, University Erlangen-Nuremberg.
 | 
			
		||||
 * All rights reserved. This file is part of nusif-solver.
 | 
			
		||||
 * Use of this source code is governed by a MIT style
 | 
			
		||||
 * license that can be found in the LICENSE file.
 | 
			
		||||
 */
 | 
			
		||||
#include "discretization.h"
 | 
			
		||||
#include "solver.h"
 | 
			
		||||
#include "util.h"
 | 
			
		||||
 | 
			
		||||
void initSolver(Solver* s, Discretization* d, Parameter* p)
 | 
			
		||||
{
 | 
			
		||||
    s->grid    = &d->grid;
 | 
			
		||||
    s->itermax = p->itermax;
 | 
			
		||||
    s->eps     = p->eps;
 | 
			
		||||
    s->omega   = p->omg;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void solveSOR(Solver* solver, double* p, double* rhs)
 | 
			
		||||
{
 | 
			
		||||
    int imax      = solver->grid->imax;
 | 
			
		||||
    int jmax      = solver->grid->jmax;
 | 
			
		||||
    double eps    = solver->eps;
 | 
			
		||||
    int itermax   = solver->itermax;
 | 
			
		||||
    double dx2    = solver->grid->dx * solver->grid->dx;
 | 
			
		||||
    double dy2    = solver->grid->dy * solver->grid->dy;
 | 
			
		||||
    double idx2   = 1.0 / dx2;
 | 
			
		||||
    double idy2   = 1.0 / dy2;
 | 
			
		||||
    double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
 | 
			
		||||
    double epssq  = eps * eps;
 | 
			
		||||
    int it        = 0;
 | 
			
		||||
    double res    = 1.0;
 | 
			
		||||
 | 
			
		||||
    while ((res >= epssq) && (it < itermax)) {
 | 
			
		||||
        res = 0.0;
 | 
			
		||||
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
 | 
			
		||||
                double r = RHS(i, j) -
 | 
			
		||||
                           ((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
 | 
			
		||||
                               (P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
 | 
			
		||||
 | 
			
		||||
                P(i, j) -= (factor * r);
 | 
			
		||||
                res += (r * r);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            P(i, 0)        = P(i, 1);
 | 
			
		||||
            P(i, jmax + 1) = P(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            P(0, j)        = P(1, j);
 | 
			
		||||
            P(imax + 1, j) = P(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        res = res / (double)(imax * jmax);
 | 
			
		||||
#ifdef DEBUG
 | 
			
		||||
        printf("%d Residuum: %e\n", it, res);
 | 
			
		||||
#endif
 | 
			
		||||
        it++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#ifdef VERBOSE
 | 
			
		||||
    printf("Solver took %d iterations to reach %f\n", it, sqrt(res));
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void solve(Solver* solver, double* p, double* rhs)
 | 
			
		||||
{
 | 
			
		||||
    int imax      = solver->grid->imax;
 | 
			
		||||
    int jmax      = solver->grid->jmax;
 | 
			
		||||
    double eps    = solver->eps;
 | 
			
		||||
    int itermax   = solver->itermax;
 | 
			
		||||
    double dx2    = solver->grid->dx * solver->grid->dx;
 | 
			
		||||
    double dy2    = solver->grid->dy * solver->grid->dy;
 | 
			
		||||
    double idx2   = 1.0 / dx2;
 | 
			
		||||
    double idy2   = 1.0 / dy2;
 | 
			
		||||
    double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
 | 
			
		||||
    double epssq  = eps * eps;
 | 
			
		||||
    int it        = 0;
 | 
			
		||||
    double res    = 1.0;
 | 
			
		||||
    int pass, jsw, isw;
 | 
			
		||||
 | 
			
		||||
    while ((res >= epssq) && (it < itermax)) {
 | 
			
		||||
        res = 0.0;
 | 
			
		||||
        jsw = 1;
 | 
			
		||||
 | 
			
		||||
        for (pass = 0; pass < 2; pass++) {
 | 
			
		||||
            isw = jsw;
 | 
			
		||||
 | 
			
		||||
            for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
                for (int i = isw; i < imax + 1; i += 2) {
 | 
			
		||||
 | 
			
		||||
                    double r = RHS(i, j) -
 | 
			
		||||
                               ((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
 | 
			
		||||
                                   (P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
 | 
			
		||||
 | 
			
		||||
                    P(i, j) -= (factor * r);
 | 
			
		||||
                    res += (r * r);
 | 
			
		||||
                }
 | 
			
		||||
                isw = 3 - isw;
 | 
			
		||||
            }
 | 
			
		||||
            jsw = 3 - jsw;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            P(i, 0)        = P(i, 1);
 | 
			
		||||
            P(i, jmax + 1) = P(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            P(0, j)        = P(1, j);
 | 
			
		||||
            P(imax + 1, j) = P(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        res = res / (double)(imax * jmax);
 | 
			
		||||
#ifdef DEBUG
 | 
			
		||||
        printf("%d Residuum: %e\n", it, res);
 | 
			
		||||
#endif
 | 
			
		||||
        it++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#ifdef VERBOSE
 | 
			
		||||
    printf("Solver took %d iterations to reach %f\n", it, sqrt(res));
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
@@ -1,564 +0,0 @@
 | 
			
		||||
/*
 | 
			
		||||
 * Copyright (C)  NHR@FAU, University Erlangen-Nuremberg.
 | 
			
		||||
 * All rights reserved. This file is part of nusif-solver.
 | 
			
		||||
 * Use of this source code is governed by a MIT style
 | 
			
		||||
 * license that can be found in the LICENSE file.
 | 
			
		||||
 */
 | 
			
		||||
#include <float.h>
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
 | 
			
		||||
#include "allocate.h"
 | 
			
		||||
#include "parameter.h"
 | 
			
		||||
#include "solver.h"
 | 
			
		||||
#include "util.h"
 | 
			
		||||
 | 
			
		||||
#define P(i, j)   p[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define F(i, j)   f[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define G(i, j)   g[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define U(i, j)   u[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define V(i, j)   v[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define RHS(i, j) rhs[(j) * (imax + 2) + (i)]
 | 
			
		||||
 | 
			
		||||
static void print(Solver* solver, double* grid)
 | 
			
		||||
{
 | 
			
		||||
    int imax = solver->imax;
 | 
			
		||||
 | 
			
		||||
    for (int j = 0; j < solver->jmax + 2; j++) {
 | 
			
		||||
        printf("%02d: ", j);
 | 
			
		||||
        for (int i = 0; i < solver->imax + 2; i++) {
 | 
			
		||||
            printf("%12.8f  ", grid[j * (imax + 2) + i]);
 | 
			
		||||
        }
 | 
			
		||||
        printf("\n");
 | 
			
		||||
    }
 | 
			
		||||
    fflush(stdout);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void printConfig(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    printf("Parameters for #%s#\n", solver->problem);
 | 
			
		||||
    printf("Boundary conditions Left:%d Right:%d Bottom:%d Top:%d\n",
 | 
			
		||||
        solver->bcLeft,
 | 
			
		||||
        solver->bcRight,
 | 
			
		||||
        solver->bcBottom,
 | 
			
		||||
        solver->bcTop);
 | 
			
		||||
    printf("\tReynolds number: %.2f\n", solver->re);
 | 
			
		||||
    printf("\tGx Gy: %.2f %.2f\n", solver->gx, solver->gy);
 | 
			
		||||
    printf("Geometry data:\n");
 | 
			
		||||
    printf("\tDomain box size (x, y): %.2f, %.2f\n", solver->xlength, solver->ylength);
 | 
			
		||||
    printf("\tCells (x, y): %d, %d\n", solver->imax, solver->jmax);
 | 
			
		||||
    printf("Timestep parameters:\n");
 | 
			
		||||
    printf("\tDefault stepsize: %.2f, Final time %.2f\n", solver->dt, solver->te);
 | 
			
		||||
    printf("\tdt bound: %.6f\n", solver->dtBound);
 | 
			
		||||
    printf("\tTau factor: %.2f\n", solver->tau);
 | 
			
		||||
    printf("Iterative solver parameters:\n");
 | 
			
		||||
    printf("\tMax iterations: %d\n", solver->itermax);
 | 
			
		||||
    printf("\tepsilon (stopping tolerance) : %f\n", solver->eps);
 | 
			
		||||
    printf("\tgamma factor: %f\n", solver->gamma);
 | 
			
		||||
    printf("\tomega (SOR relaxation): %f\n", solver->omega);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void initSolver(Solver* solver, Parameter* params)
 | 
			
		||||
{
 | 
			
		||||
    solver->problem  = params->name;
 | 
			
		||||
    solver->bcLeft   = params->bcLeft;
 | 
			
		||||
    solver->bcRight  = params->bcRight;
 | 
			
		||||
    solver->bcBottom = params->bcBottom;
 | 
			
		||||
    solver->bcTop    = params->bcTop;
 | 
			
		||||
    solver->imax     = params->imax;
 | 
			
		||||
    solver->jmax     = params->jmax;
 | 
			
		||||
    solver->xlength  = params->xlength;
 | 
			
		||||
    solver->ylength  = params->ylength;
 | 
			
		||||
    solver->dx       = params->xlength / params->imax;
 | 
			
		||||
    solver->dy       = params->ylength / params->jmax;
 | 
			
		||||
    solver->eps      = params->eps;
 | 
			
		||||
    solver->omega    = params->omg;
 | 
			
		||||
    solver->itermax  = params->itermax;
 | 
			
		||||
    solver->re       = params->re;
 | 
			
		||||
    solver->gx       = params->gx;
 | 
			
		||||
    solver->gy       = params->gy;
 | 
			
		||||
    solver->dt       = params->dt;
 | 
			
		||||
    solver->te       = params->te;
 | 
			
		||||
    solver->tau      = params->tau;
 | 
			
		||||
    solver->gamma    = params->gamma;
 | 
			
		||||
 | 
			
		||||
    int imax    = solver->imax;
 | 
			
		||||
    int jmax    = solver->jmax;
 | 
			
		||||
    size_t size = (imax + 2) * (jmax + 2) * sizeof(double);
 | 
			
		||||
    solver->u   = allocate(64, size);
 | 
			
		||||
    solver->v   = allocate(64, size);
 | 
			
		||||
    solver->p   = allocate(64, size);
 | 
			
		||||
    solver->rhs = allocate(64, size);
 | 
			
		||||
    solver->f   = allocate(64, size);
 | 
			
		||||
    solver->g   = allocate(64, size);
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < (imax + 2) * (jmax + 2); i++) {
 | 
			
		||||
        solver->u[i]   = params->u_init;
 | 
			
		||||
        solver->v[i]   = params->v_init;
 | 
			
		||||
        solver->p[i]   = params->p_init;
 | 
			
		||||
        solver->rhs[i] = 0.0;
 | 
			
		||||
        solver->f[i]   = 0.0;
 | 
			
		||||
        solver->g[i]   = 0.0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    double dx        = solver->dx;
 | 
			
		||||
    double dy        = solver->dy;
 | 
			
		||||
    double invSqrSum = 1.0 / (dx * dx) + 1.0 / (dy * dy);
 | 
			
		||||
    solver->dtBound  = 0.5 * solver->re * 1.0 / invSqrSum;
 | 
			
		||||
#ifdef VERBOSE
 | 
			
		||||
    printConfig(solver);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void computeRHS(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    int imax    = solver->imax;
 | 
			
		||||
    int jmax    = solver->jmax;
 | 
			
		||||
    double idx  = 1.0 / solver->dx;
 | 
			
		||||
    double idy  = 1.0 / solver->dy;
 | 
			
		||||
    double idt  = 1.0 / solver->dt;
 | 
			
		||||
    double* rhs = solver->rhs;
 | 
			
		||||
    double* f   = solver->f;
 | 
			
		||||
    double* g   = solver->g;
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            RHS(i, j) = idt *
 | 
			
		||||
                        ((F(i, j) - F(i - 1, j)) * idx + (G(i, j) - G(i, j - 1)) * idy);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void solve(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    int imax      = solver->imax;
 | 
			
		||||
    int jmax      = solver->jmax;
 | 
			
		||||
    double eps    = solver->eps;
 | 
			
		||||
    int itermax   = solver->itermax;
 | 
			
		||||
    double dx2    = solver->dx * solver->dx;
 | 
			
		||||
    double dy2    = solver->dy * solver->dy;
 | 
			
		||||
    double idx2   = 1.0 / dx2;
 | 
			
		||||
    double idy2   = 1.0 / dy2;
 | 
			
		||||
    double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
 | 
			
		||||
    double* p     = solver->p;
 | 
			
		||||
    double* rhs   = solver->rhs;
 | 
			
		||||
    double epssq  = eps * eps;
 | 
			
		||||
    int it        = 0;
 | 
			
		||||
    double res    = 1.0;
 | 
			
		||||
 | 
			
		||||
    while ((res >= epssq) && (it < itermax)) {
 | 
			
		||||
        res = 0.0;
 | 
			
		||||
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
 | 
			
		||||
                double r = RHS(i, j) -
 | 
			
		||||
                           ((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
 | 
			
		||||
                               (P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
 | 
			
		||||
 | 
			
		||||
                P(i, j) -= (factor * r);
 | 
			
		||||
                res += (r * r);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            P(i, 0)        = P(i, 1);
 | 
			
		||||
            P(i, jmax + 1) = P(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            P(0, j)        = P(1, j);
 | 
			
		||||
            P(imax + 1, j) = P(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        res = res / (double)(imax * jmax);
 | 
			
		||||
#ifdef DEBUG
 | 
			
		||||
        printf("%d Residuum: %e\n", it, res);
 | 
			
		||||
#endif
 | 
			
		||||
        it++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#ifdef VERBOSE
 | 
			
		||||
    printf("Solver took %d iterations to reach %f\n", it, sqrt(res));
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void solveRB(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    int imax      = solver->imax;
 | 
			
		||||
    int jmax      = solver->jmax;
 | 
			
		||||
    double eps    = solver->eps;
 | 
			
		||||
    int itermax   = solver->itermax;
 | 
			
		||||
    double dx2    = solver->dx * solver->dx;
 | 
			
		||||
    double dy2    = solver->dy * solver->dy;
 | 
			
		||||
    double idx2   = 1.0 / dx2;
 | 
			
		||||
    double idy2   = 1.0 / dy2;
 | 
			
		||||
    double factor = solver->omega * 0.5 * (dx2 * dy2) / (dx2 + dy2);
 | 
			
		||||
    double* p     = solver->p;
 | 
			
		||||
    double* rhs   = solver->rhs;
 | 
			
		||||
    double epssq  = eps * eps;
 | 
			
		||||
    int it        = 0;
 | 
			
		||||
    double res    = 1.0;
 | 
			
		||||
    int pass, jsw, isw;
 | 
			
		||||
 | 
			
		||||
    while ((res >= epssq) && (it < itermax)) {
 | 
			
		||||
        res = 0.0;
 | 
			
		||||
        jsw = 1;
 | 
			
		||||
 | 
			
		||||
        for (pass = 0; pass < 2; pass++) {
 | 
			
		||||
            isw = jsw;
 | 
			
		||||
 | 
			
		||||
            for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
                for (int i = isw; i < imax + 1; i += 2) {
 | 
			
		||||
 | 
			
		||||
                    double r = RHS(i, j) -
 | 
			
		||||
                               ((P(i + 1, j) - 2.0 * P(i, j) + P(i - 1, j)) * idx2 +
 | 
			
		||||
                                   (P(i, j + 1) - 2.0 * P(i, j) + P(i, j - 1)) * idy2);
 | 
			
		||||
 | 
			
		||||
                    P(i, j) -= (factor * r);
 | 
			
		||||
                    res += (r * r);
 | 
			
		||||
                }
 | 
			
		||||
                isw = 3 - isw;
 | 
			
		||||
            }
 | 
			
		||||
            jsw = 3 - jsw;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            P(i, 0)        = P(i, 1);
 | 
			
		||||
            P(i, jmax + 1) = P(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            P(0, j)        = P(1, j);
 | 
			
		||||
            P(imax + 1, j) = P(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        res = res / (double)(imax * jmax);
 | 
			
		||||
#ifdef DEBUG
 | 
			
		||||
        printf("%d Residuum: %e\n", it, res);
 | 
			
		||||
#endif
 | 
			
		||||
        it++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#ifdef VERBOSE
 | 
			
		||||
    printf("Solver took %d iterations to reach %f\n", it, sqrt(res));
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static double maxElement(Solver* solver, double* m)
 | 
			
		||||
{
 | 
			
		||||
    int size      = (solver->imax + 2) * (solver->jmax + 2);
 | 
			
		||||
    double maxval = DBL_MIN;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < size; i++) {
 | 
			
		||||
        maxval = MAX(maxval, fabs(m[i]));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return maxval;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void normalizePressure(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    int size    = (solver->imax + 2) * (solver->jmax + 2);
 | 
			
		||||
    double* p   = solver->p;
 | 
			
		||||
    double avgP = 0.0;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < size; i++) {
 | 
			
		||||
        avgP += p[i];
 | 
			
		||||
    }
 | 
			
		||||
    avgP /= size;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < size; i++) {
 | 
			
		||||
        p[i] = p[i] - avgP;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void computeTimestep(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    double dt   = solver->dtBound;
 | 
			
		||||
    double dx   = solver->dx;
 | 
			
		||||
    double dy   = solver->dy;
 | 
			
		||||
    double umax = maxElement(solver, solver->u);
 | 
			
		||||
    double vmax = maxElement(solver, solver->v);
 | 
			
		||||
 | 
			
		||||
    if (umax > 0) {
 | 
			
		||||
        dt = (dt > dx / umax) ? dx / umax : dt;
 | 
			
		||||
    }
 | 
			
		||||
    if (vmax > 0) {
 | 
			
		||||
        dt = (dt > dy / vmax) ? dy / vmax : dt;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    solver->dt = dt * solver->tau;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void setBoundaryConditions(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    int imax  = solver->imax;
 | 
			
		||||
    int jmax  = solver->jmax;
 | 
			
		||||
    double* u = solver->u;
 | 
			
		||||
    double* v = solver->v;
 | 
			
		||||
 | 
			
		||||
    // Left boundary
 | 
			
		||||
    switch (solver->bcLeft) {
 | 
			
		||||
    case NOSLIP:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(0, j) = 0.0;
 | 
			
		||||
            V(0, j) = -V(1, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case SLIP:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(0, j) = 0.0;
 | 
			
		||||
            V(0, j) = V(1, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case OUTFLOW:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(0, j) = U(1, j);
 | 
			
		||||
            V(0, j) = V(1, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case PERIODIC:
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Right boundary
 | 
			
		||||
    switch (solver->bcRight) {
 | 
			
		||||
    case NOSLIP:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(imax, j)     = 0.0;
 | 
			
		||||
            V(imax + 1, j) = -V(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case SLIP:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(imax, j)     = 0.0;
 | 
			
		||||
            V(imax + 1, j) = V(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case OUTFLOW:
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            U(imax, j)     = U(imax - 1, j);
 | 
			
		||||
            V(imax + 1, j) = V(imax, j);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case PERIODIC:
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Bottom boundary
 | 
			
		||||
    switch (solver->bcBottom) {
 | 
			
		||||
    case NOSLIP:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            V(i, 0) = 0.0;
 | 
			
		||||
            U(i, 0) = -U(i, 1);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case SLIP:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            V(i, 0) = 0.0;
 | 
			
		||||
            U(i, 0) = U(i, 1);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case OUTFLOW:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            U(i, 0) = U(i, 1);
 | 
			
		||||
            V(i, 0) = V(i, 1);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case PERIODIC:
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Top boundary
 | 
			
		||||
    switch (solver->bcTop) {
 | 
			
		||||
    case NOSLIP:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            V(i, jmax)     = 0.0;
 | 
			
		||||
            U(i, jmax + 1) = -U(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case SLIP:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            V(i, jmax)     = 0.0;
 | 
			
		||||
            U(i, jmax + 1) = U(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case OUTFLOW:
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            U(i, jmax + 1) = U(i, jmax);
 | 
			
		||||
            V(i, jmax)     = V(i, jmax - 1);
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    case PERIODIC:
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void setSpecialBoundaryCondition(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    int imax   = solver->imax;
 | 
			
		||||
    int jmax   = solver->jmax;
 | 
			
		||||
    double mDy = solver->dy;
 | 
			
		||||
    double* u  = solver->u;
 | 
			
		||||
 | 
			
		||||
    if (strcmp(solver->problem, "dcavity") == 0) {
 | 
			
		||||
        for (int i = 1; i < imax; i++) {
 | 
			
		||||
            U(i, jmax + 1) = 2.0 - U(i, jmax);
 | 
			
		||||
        }
 | 
			
		||||
    } else if (strcmp(solver->problem, "canal") == 0) {
 | 
			
		||||
        double ylength = solver->ylength;
 | 
			
		||||
        double y;
 | 
			
		||||
 | 
			
		||||
        for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
            y       = mDy * (j - 0.5);
 | 
			
		||||
            U(0, j) = y * (ylength - y) * 4.0 / (ylength * ylength);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void computeFG(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    double* u        = solver->u;
 | 
			
		||||
    double* v        = solver->v;
 | 
			
		||||
    double* f        = solver->f;
 | 
			
		||||
    double* g        = solver->g;
 | 
			
		||||
    int imax         = solver->imax;
 | 
			
		||||
    int jmax         = solver->jmax;
 | 
			
		||||
    double gx        = solver->gx;
 | 
			
		||||
    double gy        = solver->gy;
 | 
			
		||||
    double gamma     = solver->gamma;
 | 
			
		||||
    double dt        = solver->dt;
 | 
			
		||||
    double inverseRe = 1.0 / solver->re;
 | 
			
		||||
    double inverseDx = 1.0 / solver->dx;
 | 
			
		||||
    double inverseDy = 1.0 / solver->dy;
 | 
			
		||||
    double du2dx, dv2dy, duvdx, duvdy;
 | 
			
		||||
    double du2dx2, du2dy2, dv2dx2, dv2dy2;
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            du2dx = inverseDx * 0.25 *
 | 
			
		||||
                        ((U(i, j) + U(i + 1, j)) * (U(i, j) + U(i + 1, j)) -
 | 
			
		||||
                            (U(i, j) + U(i - 1, j)) * (U(i, j) + U(i - 1, j))) +
 | 
			
		||||
                    gamma * inverseDx * 0.25 *
 | 
			
		||||
                        (fabs(U(i, j) + U(i + 1, j)) * (U(i, j) - U(i + 1, j)) +
 | 
			
		||||
                            fabs(U(i, j) + U(i - 1, j)) * (U(i, j) - U(i - 1, j)));
 | 
			
		||||
 | 
			
		||||
            duvdy = inverseDy * 0.25 *
 | 
			
		||||
                        ((V(i, j) + V(i + 1, j)) * (U(i, j) + U(i, j + 1)) -
 | 
			
		||||
                            (V(i, j - 1) + V(i + 1, j - 1)) * (U(i, j) + U(i, j - 1))) +
 | 
			
		||||
                    gamma * inverseDy * 0.25 *
 | 
			
		||||
                        (fabs(V(i, j) + V(i + 1, j)) * (U(i, j) - U(i, j + 1)) +
 | 
			
		||||
                            fabs(V(i, j - 1) + V(i + 1, j - 1)) *
 | 
			
		||||
                                (U(i, j) - U(i, j - 1)));
 | 
			
		||||
 | 
			
		||||
            du2dx2  = inverseDx * inverseDx * (U(i + 1, j) - 2.0 * U(i, j) + U(i - 1, j));
 | 
			
		||||
            du2dy2  = inverseDy * inverseDy * (U(i, j + 1) - 2.0 * U(i, j) + U(i, j - 1));
 | 
			
		||||
            F(i, j) = U(i, j) + dt * (inverseRe * (du2dx2 + du2dy2) - du2dx - duvdy + gx);
 | 
			
		||||
 | 
			
		||||
            duvdx = inverseDx * 0.25 *
 | 
			
		||||
                        ((U(i, j) + U(i, j + 1)) * (V(i, j) + V(i + 1, j)) -
 | 
			
		||||
                            (U(i - 1, j) + U(i - 1, j + 1)) * (V(i, j) + V(i - 1, j))) +
 | 
			
		||||
                    gamma * inverseDx * 0.25 *
 | 
			
		||||
                        (fabs(U(i, j) + U(i, j + 1)) * (V(i, j) - V(i + 1, j)) +
 | 
			
		||||
                            fabs(U(i - 1, j) + U(i - 1, j + 1)) *
 | 
			
		||||
                                (V(i, j) - V(i - 1, j)));
 | 
			
		||||
 | 
			
		||||
            dv2dy = inverseDy * 0.25 *
 | 
			
		||||
                        ((V(i, j) + V(i, j + 1)) * (V(i, j) + V(i, j + 1)) -
 | 
			
		||||
                            (V(i, j) + V(i, j - 1)) * (V(i, j) + V(i, j - 1))) +
 | 
			
		||||
                    gamma * inverseDy * 0.25 *
 | 
			
		||||
                        (fabs(V(i, j) + V(i, j + 1)) * (V(i, j) - V(i, j + 1)) +
 | 
			
		||||
                            fabs(V(i, j) + V(i, j - 1)) * (V(i, j) - V(i, j - 1)));
 | 
			
		||||
 | 
			
		||||
            dv2dx2  = inverseDx * inverseDx * (V(i + 1, j) - 2.0 * V(i, j) + V(i - 1, j));
 | 
			
		||||
            dv2dy2  = inverseDy * inverseDy * (V(i, j + 1) - 2.0 * V(i, j) + V(i, j - 1));
 | 
			
		||||
            G(i, j) = V(i, j) + dt * (inverseRe * (dv2dx2 + dv2dy2) - duvdx - dv2dy + gy);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* ---------------------- boundary of F --------------------------- */
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        F(0, j)    = U(0, j);
 | 
			
		||||
        F(imax, j) = U(imax, j);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* ---------------------- boundary of G --------------------------- */
 | 
			
		||||
    for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
        G(i, 0)    = V(i, 0);
 | 
			
		||||
        G(i, jmax) = V(i, jmax);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void adaptUV(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    int imax       = solver->imax;
 | 
			
		||||
    int jmax       = solver->jmax;
 | 
			
		||||
    double* p      = solver->p;
 | 
			
		||||
    double* u      = solver->u;
 | 
			
		||||
    double* v      = solver->v;
 | 
			
		||||
    double* f      = solver->f;
 | 
			
		||||
    double* g      = solver->g;
 | 
			
		||||
    double factorX = solver->dt / solver->dx;
 | 
			
		||||
    double factorY = solver->dt / solver->dy;
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            U(i, j) = F(i, j) - (P(i + 1, j) - P(i, j)) * factorX;
 | 
			
		||||
            V(i, j) = G(i, j) - (P(i, j + 1) - P(i, j)) * factorY;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void writeResult(Solver* solver)
 | 
			
		||||
{
 | 
			
		||||
    int imax  = solver->imax;
 | 
			
		||||
    int jmax  = solver->jmax;
 | 
			
		||||
    double dx = solver->dx;
 | 
			
		||||
    double dy = solver->dy;
 | 
			
		||||
    double* p = solver->p;
 | 
			
		||||
    double* u = solver->u;
 | 
			
		||||
    double* v = solver->v;
 | 
			
		||||
    double x = 0.0, y = 0.0;
 | 
			
		||||
 | 
			
		||||
    FILE* fp;
 | 
			
		||||
    fp = fopen("pressure.dat", "w");
 | 
			
		||||
 | 
			
		||||
    if (fp == NULL) {
 | 
			
		||||
        printf("Error!\n");
 | 
			
		||||
        exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        y = (double)(j - 0.5) * dy;
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            x = (double)(i - 0.5) * dx;
 | 
			
		||||
            fprintf(fp, "%.2f %.2f %f\n", x, y, P(i, j));
 | 
			
		||||
        }
 | 
			
		||||
        fprintf(fp, "\n");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fclose(fp);
 | 
			
		||||
 | 
			
		||||
    fp = fopen("velocity.dat", "w");
 | 
			
		||||
 | 
			
		||||
    if (fp == NULL) {
 | 
			
		||||
        printf("Error!\n");
 | 
			
		||||
        exit(EXIT_FAILURE);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (int j = 1; j < jmax + 1; j++) {
 | 
			
		||||
        y = dy * (j - 0.5);
 | 
			
		||||
        for (int i = 1; i < imax + 1; i++) {
 | 
			
		||||
            x            = dx * (i - 0.5);
 | 
			
		||||
            double vel_u = (U(i, j) + U(i - 1, j)) / 2.0;
 | 
			
		||||
            double vel_v = (V(i, j) + V(i, j - 1)) / 2.0;
 | 
			
		||||
            double len   = sqrt((vel_u * vel_u) + (vel_v * vel_v));
 | 
			
		||||
            fprintf(fp, "%.2f %.2f %f %f %f\n", x, y, vel_u, vel_v, len);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fclose(fp);
 | 
			
		||||
}
 | 
			
		||||
@@ -6,41 +6,21 @@
 | 
			
		||||
 */
 | 
			
		||||
#ifndef __SOLVER_H_
 | 
			
		||||
#define __SOLVER_H_
 | 
			
		||||
#include "discretization.h"
 | 
			
		||||
#include "grid.h"
 | 
			
		||||
#include "parameter.h"
 | 
			
		||||
 | 
			
		||||
enum BC { NOSLIP = 1, SLIP, OUTFLOW, PERIODIC };
 | 
			
		||||
 | 
			
		||||
typedef struct {
 | 
			
		||||
    /* geometry and grid information */
 | 
			
		||||
    double dx, dy;
 | 
			
		||||
    int imax, jmax;
 | 
			
		||||
    double xlength, ylength;
 | 
			
		||||
    /* arrays */
 | 
			
		||||
    double *p, *rhs;
 | 
			
		||||
    double *f, *g;
 | 
			
		||||
    double *u, *v;
 | 
			
		||||
    Grid* grid;
 | 
			
		||||
    /* parameters */
 | 
			
		||||
    double eps, omega;
 | 
			
		||||
    double re, tau, gamma;
 | 
			
		||||
    double gx, gy;
 | 
			
		||||
    /* time stepping */
 | 
			
		||||
    double eps, omega, rho;
 | 
			
		||||
    int itermax;
 | 
			
		||||
    double dt, te;
 | 
			
		||||
    double dtBound;
 | 
			
		||||
    char* problem;
 | 
			
		||||
    int bcLeft, bcRight, bcBottom, bcTop;
 | 
			
		||||
    int levels;
 | 
			
		||||
    double **r, **e;
 | 
			
		||||
} Solver;
 | 
			
		||||
 | 
			
		||||
extern void initSolver(Solver*, Parameter*);
 | 
			
		||||
extern void computeRHS(Solver*);
 | 
			
		||||
extern void solve(Solver*);
 | 
			
		||||
extern void solveRB(Solver*);
 | 
			
		||||
extern void solveRBA(Solver*);
 | 
			
		||||
extern void normalizePressure(Solver*);
 | 
			
		||||
extern void computeTimestep(Solver*);
 | 
			
		||||
extern void setBoundaryConditions(Solver*);
 | 
			
		||||
extern void setSpecialBoundaryCondition(Solver*);
 | 
			
		||||
extern void computeFG(Solver*);
 | 
			
		||||
extern void adaptUV(Solver*);
 | 
			
		||||
extern void writeResult(Solver*);
 | 
			
		||||
extern void initSolver(Solver*, Discretization*, Parameter*);
 | 
			
		||||
extern void solve(Solver*, double*, double*);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -19,11 +19,11 @@
 | 
			
		||||
#define ABS(a) ((a) >= 0 ? (a) : -(a))
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define P(i, j)   p[(j) * (imaxLocal + 2) + (i)]
 | 
			
		||||
#define F(i, j)   f[(j) * (imaxLocal + 2) + (i)]
 | 
			
		||||
#define G(i, j)   g[(j) * (imaxLocal + 2) + (i)]
 | 
			
		||||
#define U(i, j)   u[(j) * (imaxLocal + 2) + (i)]
 | 
			
		||||
#define V(i, j)   v[(j) * (imaxLocal + 2) + (i)]
 | 
			
		||||
#define RHS(i, j) rhs[(j) * (imaxLocal + 2) + (i)]
 | 
			
		||||
#define P(i, j)   p[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define F(i, j)   f[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define G(i, j)   g[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define U(i, j)   u[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define V(i, j)   v[(j) * (imax + 2) + (i)]
 | 
			
		||||
#define RHS(i, j) rhs[(j) * (imax + 2) + (i)]
 | 
			
		||||
 | 
			
		||||
#endif // __UTIL_H_
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user